Academic Integrity by Design: Von der Regulierung zum Vertrauen im KI-Klassenzimmer

Folgen Sie der PH Zürich auf Social Media

–> Read this blog post in English

Text von Mònica Feixas

Künstliche Intelligenz fasziniert und beunruhigt uns zugleich. Für manche ist sie die grösste Bedrohung der akademischen Integrität seit einer Generation, für andere das mächtigste Lernwerkzeug seit der Erfindung des Buchdrucks. Unter akademischer Integrität ist dabei ein verantwortungsvoller Umgang mit Wissen in Studium und Lehre zu verstehen, der sich in Konzeptionen von Redlichkeit, Fairness oder Verantwortung widerspiegelt.

In diesem Blog lade ich Sie ein, genauer hinzusehen: Wie sprechen Universitäten in ihren Reglementen, Vorgaben und Richtlinien – nachfolgend Policies genannt – über KI? Um die Hintergründe der Policies besser zu verstehen, schlage ich den Triple-A-Ansatz vor – Awareness, Agency, Action:

  • Awareness: Erkennen, wie KI in Policies gerahmt wird, unterliegende Narrative und Annahmen sichtbar machen.
  • Agency: Sicherstellen, dass Menschen – Lehrende wie Studierende – handlungsfähig bleiben. KI ersetzt kritisches Denken nicht, sondern macht es dringlicher.
  • Action: Für den Schritt von der Theory zur Praxis sind Leistungsnachweise und Leistungsbeurteilung neu zu gestalten und KI bewusst in die Lehre zu integrieren, wodurch KI Literacy sowie die epistemische Handlungsfähigkeit gefördert werden und den kritischen, ethischen Gebrauch von KI stärken.
Bild 1: Der Triple-A-Ansatz (Ausarbeitung M. Feixas mit napkin.ai)

Awareness: Was Policies sichtbar machen

In unserer Analyse von 14 Hochschul-Policies zu generativer KI (aus Spanien und der Schweiz) zeigte sich: Policies regulieren nicht nur, sie erzählen Geschichten über Studierende, Lehrende und Wissen:

  • Definitionen sind entscheidend: Einige Policies definieren KI als Werkzeug (wie ein Wörterbuch), andere als risikobehaftetes System, als Denkpartner oder sogar als transformativen Faktor für Bildung. Diese Sichtweisen prägen, wie Integrität und Leistungsbeuteilung gedacht werden.
  • Narrative formen Integrität (Tabelle 1):
    • Restriktive Policies sehen KI primär als Bedrohung. Sie sprechen von «Betrug» und «Erkennung», stellen Studierende als potenzielle Täuschende dar und Lehrende als Kontrollinstanz. Die Wahrung von Integrität wird auf Überwachung reduziert.
    • Ermöglichende Policies sehen in KI eine Chance für das Lernen. Sie fordern Studierende auf, KI-Nutzung zu deklarieren und zu reflektieren. Lehrende ermuntern sie, Leistungsnachweise und Leistungsbeurteilung neu zu gestalten . Integrität dreht sich um Transparenz, Dialog und Begleitung.
In restriktiven Policies:
– KI = Akademische Unredlichkeit
– Studierende gelten als potenzielle Betrüger:innen, die Tools missbrauchen, wenn sie nicht streng reguliert werden. Es wird angenommen, dass sie unmotiviert sind und Abkürzungen suchen.
– Traditionelle Prüfungsformate = naturgemäss vertrauenswürdig
– Lehrende sollen überwachen und kontrollieren
– Der Fokus der akademischen Integrität liegt auf Erkennung und Überwachung von Fehlverhalten
In nicht-restriktiven Policies:
– KI = Chance für Lernen und didaktische Innovation
– Studierende werden als aktive, kritische Denker:innen gesehen. Sie müssen ethischen Umgang mit KI und neue Literacies erwerben
– Leistungsbeurteilung  = Prozess + Reflexion
– Lehrende als Mentor:innen und Designer:innen, deren Rolle unersetzlich ist
– Der Fokus der akademischen Integrität liegt auf Begleitung, Transparenz und Reflexion von Lernvorgängen
Tabelle 1: Gegensätzliche Narrative von KI in Hochschul-Policies

Diese Narrative prägen die Kultur einer Hochschule: Sind Studierende potenzielle Betrüger:innen oder verantwortungsbewusste Lernende? Sind Lehrende Detektive oder Mentor:innen? Die Antworten auf diese Fragen prägen, wie wir Verantwortung und Redlichkeit in Studium und Lehre verstehen – und wie wir die Handlungsfähigkeit der Studierenden fördern.

Neudefinition der akademischen Integrität

Warum schummeln Studierende? Untersuchungen (Eaton et al. 2025) zeigen, dass Schummeln durch eine Kombination verschiedener Faktoren begünstigt wird. Dazu gehören Stress, unklare oder unrealistische Beurteilungskriterien sowie Gruppendruck. Viele Studierende verstehen auch die akademischen Erwartungen nicht immer.
Unter Bezugnahme auf die Studie von Rhode (2017) erinnern uns Eaton et al. daran, dass nur ein kleiner Teil der Studierenden niemals betrügt und eine ähnlich kleine Minderheit absichtlich und konsequent betrügt; die Mehrheit – etwa 80–90 % – befindet sich in der Mitte, was bedeutet, dass sie unter Druck in gewissen Situationen Abstriche machen und dies oft hinterher bereuen.
Obwohl viele Studierende gegenüber KI noch vorsichtig sind, betrachten die meisten deren Einsatz nicht als Betrug, es sei denn, die Grenzen sind klar definiert. Wo liegt die Grenze zwischen «akzeptabler Hilfe» durch KI und tatsächlichem Fehlverhalten? Die meisten Universitäten behandeln die unbefugte (KI-Nutzung in einer Weise, die von der Lehrveranstaltung oder der Hochschule her nicht erlaubt ist) oder die nicht deklarierte KI-Nutzung als Fehlverhalten, ähnlich wie Plagiate. Daher legen sie Wert auf Transparenz: Von den Studierenden wird erwartet, dass sie angeben, wie KI genutzt wurde. Dies ist eine eher auf Compliance basierende Sichtweise von Integrität: Der Fokus liegt auf Regeln und deren Durchsetzung durch Überwachung und Sanktionen.

Allerdings sollte es bei akademischer Integrität nicht nur darum gehen, was Studierende nicht tun sollten, sondern vor allem darum, was die gesamte akademische Gemeinschaft tut: Vertrauen und Respekt aufbauen, Fairness praktizieren und Verantwortung in der Wissensarbeit übernehmen. Dies kann sich nicht allein auf Bestrafung stützen; es braucht eine Kultur des Lehrens und Lernens und KI-Literacy.

Agency: Wer hat die Kontrolle?

KI-Literacy bedeutet mehr als Toolwissen, sie umfasst auch Handlungsfähigkeit. Es geht dabei um die Fähigkeit, im Umgang mit KI informierte Entscheidungen zu treffen, kritisch und ethisch zu urteilen und aktiv mitzuwirken (Emirbayer & Mische, 1998; Bandura, 2001). Ohne solche Handlungsfähigkeit laufen wir Gefahr, zu viel von unserem Denken an Maschinen auszulagern.

  • Wer hat die Kontrolle: Menschen oder Maschinen?

KI kann unsere denkbezogene Handlungsfähigkeit entweder untergraben oder stärken. Wenn Studierende KI unkritisch nutzen, können sie Kreativität und kognitive Fähigkeiten verlieren. Wenn sie sich jedoch kritisch damit auseinandersetzen, kann KI zu einem Werkzeug für vertieftes Lernen werden. Lehrende stehen vor derselben Wahl: Handlungsfähigkeit verlieren, indem sie die KI-Nutzung der Studierenden nur überwachen; oder Handlungsfähigkeit gewinnen, indem sie innovative Leistungsnachweise gestalten, die Reflexion, Bewertung und kritisches Denken erfordern.

  • Was passiert mit dem Denken, wenn wir uns zu sehr auf KI verlassen?

Das Haupt­risiko ist das, was manche als kognitive Atrophie oder «Brain Drain» bezeichnen (Guest et al. 2025): Wenn wir zu viel geistige Anstrengung auslagern, schrumpft unsere Fähigkeit zum tiefgreifenden Denken.

  • Kognitives Auslagern kann Arbeitsgedächtnis für höheres Denken frei machen, aber übermässige Nutzung schwächt das Gedächtnis und die Argumentationsfähigkeit (Oakley et al. 2025).
  • Produktive Anstrengung ist entscheidend: Lernen braucht Herausforderung und Anstrengung mit passender Unterstützung (Hattie et al. 2023). Wenn KI dies wegnimmt, verlieren Studierende Resilienz und kritische Fähigkeiten.

Guest et al. 2025 zeigen, dass KI zwar das Abstraktionsniveau erhöhen, aber die Anstrengung und die Denktiefe verringern kann. Expertinnen können vom KI-Gebrauch profitieren, um Aufgaben zu «segmentieren», aber Novizen laufen Gefahr laufen, von den KI-Tools abhängig zu werden. Dies kann Ungleichheiten vergrössern zwischen intellektuell selbstbewussten Studierenden, die KI nutzen, um Grenzen auszuloten, und jenen, die KI die Arbeit erledigen lassen.

  • Wie schützen wir die menschliche Handlungsfähigkeit im Zeitalter der KI?

Das grösste Risiko ist übermässiges Vertrauen: Wer sich blind auf KI verlässt, verliert am meisten an epistemischer Unabhängigkeit. Und je besser die KI-Systeme werden, desto mehr wächst die die Versuchung, ihnen alles zu überlassen. Die menschliche Handlungsfähigkeit zu schützen bedeutet:

  • Skepsis fördern: Studierende darin unterrichten, KI-Ausgaben zu hinterfragen.
  • Zum Nachdenken anregen: Aufgaben entwickeln, die Bewertung, Urteilsvermögen und Reflexion erfordern.
  • Unabhängigkeit bewahren: Raum schaffen für die Anstrengung, die Wissen, Resilienz und kritische Fähigkeiten aufbaut.

KI wird bleiben, und wir sollten sie nicht unkritisch einsetzen. Stattdessen können wir sie als Chance betrachten. Die Herausforderung besteht darin, akademische Integrität umfassend zu fördern. Das bedeutet, Studierende als fähige Lernende, Lehrer als vertrauenswürdige Fachleute und Institutionen als fürsorgliche Gemeinschaften zu betrachten.

Wenn wir epistemische Handlungsfähigkeit in unsere Curricula integrieren, kann KI zu einem Werkzeug für Wachstum werden, das Studierenden hilft, Lernfähigkeit, Verantwortungsbewusstsein und höheres Denken zu entwickeln, anstatt eine Abkürzung zu oberflächlichen Antworten zu sein.

Action: Zukunft gestalten

Während Awareness unterliegende Annahmen sichtbar macht und Agency die Fähigkeit zu kritischem Denken schützt, muss Action akademische Integrität im grossen Stil neu gestalten. Auf die Frage «Welche wissenschaftlichen Wege gibt es, um akademische Integrität zu gestalten?» gibt es keine einfache Antwort, aber ich schlage drei Handlungsfelder vor: Didaktik/Pädagogik, Governance und Gemeinschaftsbildung. Dies sind Themen, die wir in den kommenden Monaten in verschiedenen Veranstaltungen näher erkunden werden (siehe Infobox ).

Pädagogik

  • Prüfungen neu gestalten: Prozessorientierte Formate einbeziehen (Reflexionen, Versionsverläufe, Journale, Portfolios oder mündliche Erklärungen, die das Denken sichtbar machen – nicht nur Endprodukte).
  • Autorschaft neu definieren: Studierende auffordern, ihre KI-Nutzung zu dokumentieren und zu reflektieren, wie diese ihr Denken und ihre Arbeit beeinflusst hat – und warum.
  • Transparenz fördern: Klar kommunizieren, wann und wie KI genutzt werden darf.
  • KI-Kompetenz fördern: Grundlagen der KI lehren, einschließlich Datenschutz, kritischer Bewertung und ethischer Nutzung.
  • Epistemische Kompetenz prüfen: Können Studierende begründen, wann und warum sie KI genutzt (oder nicht genutzt) haben?

Governance

Wie in der Studie (Feixas, 2025) erwähnt:

  • Richtlinien müssen klar festlegen, wann KI genutzt werden darf, wie ihre Nutzung dokumentiert werden soll und wann sie ausgeschlossen werden muss, um Lernen und echte Leistung zu schützen.
  • Über blosse Regelkonformität hinausgehen: Nicht nur auflisten, was «erlaubt» oder «verboten» ist, sondern:
    • klare Werte wie Ehrlichkeit, Fairness und Vertrauen formulieren.
    • Studierende als verantwortliche Akteure sehen: nicht nur als potenzielle Betrüger:innen, sondern als Partner:innen bei der Gestaltung von Integrität.
    • Lehrende stärken: durch Weiterbildung, Infrastruktur und Zeit, um mit neuen Prüfungsformaten zu experimentieren.
  • Prüfungen ins Zentrum stellen: denn dort ist Integrität am folgenreichsten – sie entscheidet über Anerkennung, Noten und Chancen.
  • Klare Rahmen vorgeben, wann KI erlaubt, angeleitet oder ausgeschlossen ist (z. B. das University of Sydney’s two-lane model oder die AIAS Assessment Scale).
  • Handlungsfähigkeit von Lehrenden und Studierenden stärken – mit KI-Kompetenz, Weiterbildung und geeigneter Infrastruktur.

Community-Building

Integrität entsteht, wenn Allianzen aufgebaut werden, die sich von Pilotprojekten im Unterricht bis hin zu institutionellen Strategien skalieren lassen:

  • Dialog und geteilte Verantwortung zwischen Dozierenden, Studierenden und der Verwaltung fördern.
  • Gute Praktiken und Pilotprojekte teilen, die Integrität stärken.
  • Kritische Diskussionen anregen über Macht, Ethik und die Rolle von KI in der Wissensproduktion.
INFOBOX

- Kurztagung Assessment und KI: Gemeinsam praktische Formate erkunden (PH Zürich, 20. November 2025). Experimentelles, praxisnahes Format mit offenen Dialogen und Co-Creation.

- Fostering Epistemic Agency in Higher Education: Why and How? Kostenloses Webinar der Forschungsgruppe empirische Hochschuldidaktik mit Dr. Juuso Nieminen (Deakin University, Australien), 4. November 2025

- The ICED26 Conference «Agency and Academic Development» (Salamanca, 24.-26. Juni 2026). Die internationale Konferenz für Hochschuldidaktiker und Hochschulentwicklerinnen, aber auch für Hochschulforschende und Führungskräfte. Dieses Mal erkunden wir, wie Handlungsfähigkeit Wissen, Strategie und studentisches Lernen an Hochschulen prägt: Wie können Hochschuldidaktik und Hochschulentwicklung in einer sich schnell verändernden Hochschullandschaft die Handlungsfähigkeit der Studierenden und Lehrenden fördern?

Zur Autorin

Mònica Feixas ist Dozentin im Zentrum für Hochschuldidaktik und -entwicklung der PH Zürich. Sie ist ausserdem die Kongressleiterin (Convenor) der ICED-Konferenz (International Consortium for Educational Development), die vom 24. bis 26. Juni 2026 in Salamanca (Spanien) stattfinden wird.

Übersetzt ins Deutsche durch Tobias Zimmermann.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

LINKEDIN
Share
INSTAGRAM