Überlegungen zu KI-generiertem Feedback

Text: Jacqueline Egli

«Bitte lesen Sie sich die kommentierte Arbeit in Ruhe durch. Überlegen Sie, ob Sie die Korrekturen nachvollziehen können und ob das schriftliche Feedback für Sie verständlich ist. Bei Unklarheiten wenden Sie sich bitte an mich. Überarbeiten Sie den Text und vertiefen Sie das Thema. Reichen Sie Ihre Arbeit in zwei Wochen erneut ein.»

Diese Situation kennen wohl alle Lehrpersonen: abends oder über das Wochenende viele Texte lesen und Rückmeldungen dazu verfassen. Das braucht Zeit, Geduld und Ausdauer. Besonders, wenn die Weiterentwicklung erneut gelesen und gefeedbackt wird. Wer würde sich da nicht über einen Zauberspruch freuen, der diese Arbeit automatisch erledigt. (Generative) künstliche Intelligenz (KI) kann vieles, aber kann sie auch das? – Ja und Nein.

Lernförderliches Feedback

Das Angebot, Texte oder Projekte bereits während der Erstellung zu sichten und zu besprechen, legt den Fokus auf den Prozess (siehe den Blogbeitrag Über das Potenzial von Online-Feedback von Mònica Feixas und Franziska Zellweger) oder die Handlung und nicht (nur) auf das Endprodukt. Dies ist wichtig, denn Feedback greift u.a. dann, wenn es von der feedbackerhaltenden Person reflektiert und gleich weiterverarbeitet wird. Tobias Zimmermann nennt in seinem Buch Leistungsbeurteilung an Hochschulen lernförderlich gestalten explizit zwei verschiedene Arten von Unterstützung: adaptive (durch Erklärung und Beispiele) und behelfsmässige (durch Erhalten der richtigen Antwort). Lernförderlich ist nur ersteres, da es durch Hilfestellung unterstützt. Dies unterstreicht die aktuelle Studie von Hamsa Bastani «Generative AI can harm learning»: Laut dieser wurden zwar Übungen generell mit Unterstützungen von KI-Bots besser gelöst, aber das Lernen unterstützt haben nur die KI-Tutorsysteme, die – aufgrund der Einstellungen – keine Lösung, sondern lediglich Hinweise auf weitere (Reflexions-)Schritte gaben.

KI-generierte Rückmeldungen

Mehrere KI-Anwendungen bieten neuerdings an, Korrekturen und Feedback zu übernehmen (z.B. ChatGPT, DeepL und Language Tool) Aber wie gut, differenziert und lernförderlich sind diese KI-generierten Rückmeldungen?

Intuitiv werden viele sagen, dass die Rückmeldung eines Menschen wertvoller ist als die einer KI. Denn beim Feedback spielt die Beziehungsebene eine wichtige Rolle, wie u.a. Tobias Zimmermann in seinem Blogbeitrag deutlich macht, und diese ist an Menschen gebunden.

Quelle: Adobe Stock

Studien (Dai et al. 2023 oder Escalante et al. 2023) haben nun beschrieben, dass auch maschinelles Feedback – bei gut erstellten Prompts – lernförderlich sein kann und dass sich bei den Studierenden keine eindeutige Präferenz zeigt, von wem sie die Rückmeldung erhalten möchten. Escalante stellt in seiner Studie «no difference in learning outcomes», also keinen Unterschied bezüglich Lernergebnis zwischen maschinellem und menschlichem Feedback fest. Es stellt sich die Frage, ob die Studierenden sich bewusst sind, dass die KI eine Maschine ist oder ob sie dies manchmal vergessen und die KI als empathisch und verständnisvoll sehen, also vermenschlichen.

Gemäss dieser Studien ist das Feedback der KI positiver (Fokus auf Gelungenes), während das der Lehrperson negativer gepolt ist (Fokus auf Verbesserungswürdiges). Dies ist nicht falsch, denn aus Fehlern lernt man. In der Schule ist es aber auch wichtig, bereits Gelungenes hervorzuheben und daran Weiterentwicklungsmöglichkeiten zu knüpfen (also Stärken zu stärken). Möglicherweise kann KI das Feedback der Lehrperson sinnvoll ergänzen.

Rückmeldungen von GPT wurden von den Studierenden signifikant besser verstanden (Dai et al. 2023). KI generiertes Feedback begann meist mit einer kurzen Zusammenfassung der Arbeit des Lernenden und einem Überblick über die Bewertung, gefolgt von weiteren Ausführungen. Die bessere Verständlichkeit könnte daraus resultieren, dass GPT länger und in vollständigen Sätzen kommentiert, wohingegen Rückmeldungen aus menschlicher Hand eher aus unvollständigen Sätzen, bzw. Satzfragmenten bestehen. Die Verständlichkeit bleibt dabei oft auf der Strecke.

Erfahrungsgemäss tendiert KI-Feedback zur Oberflächlichkeit. Die KI erkennt Details und Besonderheiten von Inhalten oft nicht, insbesondere wenn diese regional differieren, da diese Informationen in ihren Trainingseinheiten wohl nicht vorkamen. ChatGPT liefert daher eher allgemein gehaltenes Feedback. Zudem kann die KI etwas als «gut» rückmelden, auch wenn es inhaltlich falsch ist. Daher ist es wichtig, in der Klasse Falschinformationen und Halluzinationen zu thematisieren.

Mit den Worten von Beat Döbeli in seinem Blogbeitrag: «Konkret: Das Feedback eines GMLS ist derzeit vermutlich schlechter als das einer guten Lehrperson. Das Feedback eines GMLS ist jedoch rascher und öfter verfügbar als das einer Lehrperson.»

Es kann für Lernende auch ein Sicherheitsanker sein, wenn sie eine erste Rückmeldung von einer anonymen und wertungsfreien Instanz erhalten und darauf basierend erste Überarbeitungen vornehmen können, bevor eine Lehrperson (oder Peers) einen Blick darauf werfen.

Lerneffekt?

Wenn es um Rückmeldungen zu Grammatik oder Orthografie geht, kann die KI diese meist problemlos erkennen und korrigieren. Allerdings gibt z.B. ChatGPT keine Erklärungen zu den Optimierungen. Bleiben diese aus, verpufft der Lernerfolg, resp. er muss sich mühsam erarbeitet werden, indem der Ursprungstext mit dem generierten Output verglichen wird, Unterschiede herausgestrichen und verstanden werden. Natürlich kann die KI auch aufgefordert werden, diese Aufgaben zu übernehmen und eine Tabelle mit den häufigsten Fehlern zu erstellen, allenfalls sogar mit einer Erklärung dazu. Aber Hand aufs Herz: wie viele Lernende nehmen diesen Aufwand wohl auf sich, wenn die Lösung direkt erfragt werden kann?

Es ist daher unabdingbar, sowohl das Thema «Lernen» als auch das Thema «Feedback» auf der Meta-Ebene mit den Klassen zu besprechen. Einerseits sollten die Jugendlichen lernen, dass Skill-Skipping (sich also die Lösung geben lassen anstatt sich die Kenntnisse selbst zu erarbeiten) zwar einfach, aber nicht lernförderlich ist. Andererseits sollten sie auch befähigt werden, Feedback zu verstehen und für sich zielführend einzusetzen. Und für diese Diskussion braucht es Menschen mit Empathie, Menschenkenntnis und einem Augenzwinkern.

INFOBOX

Am 20. Mai 2025 findet der halbtägige Kurs (Digitales) Feedback – Lernprozesse sichtbar machen statt.

Im Rahmen des CAS Unterricht gestalten mit digitalen Medien besteht die Möglichkeit, das Modul Lernförderliches Feedback: digital, multimedial oder mit KI zu besuchen. Das Modul ist auch einzeln buchbar.

Zur Autorin

Jacqueline Egli ist Dozentin am Zentrum für Berufs- und Erwachsenenbildung an der PH Zürich. Ihre Themengebiete sind unter anderem die Schul- und Unterrichtsentwicklung mit dem Schwerpunkt auf den digitalen Wandel und Changemanagement und Organisationsentwicklung für Bildungsinstitutionen.

Wissenschaftliches Schreiben – KI als Ghost, Partner oder Tutor

Text: Alex Rickert

Es gibt inzwischen empirische Evidenz dafür, dass Studierende und Schüler:innen mit KI zwar qualitativ bessere Texte schreiben, dadurch aber weniger Lernen in Bezug auf den Gegenstand im Vergleich zum Schreiben ohne KI (Ju 2023; Süße u. Kobert 2023). Es fragt sich daher, inwiefern der Einsatz von KI beim Schreiben zum Zweck des Lernens sinnvoll ist. Auf welche Weise sollen generative Bots beim Schreiben von Texten zum Einsatz kommen, damit sie den Schreibprozess unterstützen und gleichzeitig das Lernen durch Schreiben fördern? Dieser Frage geht der vorliegende Beitrag nach.

KI fürs Fachlernen nutzen – aber wie?

Ausgehend von einer Heuristik nach Steinhoff (2023) wird von drei Rollen ausgegangen, die eine generative KI beim Schreiben als zusätzlicher «Aktant» nebst der schreibenden Person spielen kann. Diese Rollen sind: Ghostwriter, Writing Partner und Writing Tutor.

  • Als Ghostwriter nimmt ein Large Language Model (LLM) einer Person das Schreiben ab. Eine Person formuliert einen Prompt oder eine interaktive Sequenz von Prompts, die den Schreibauftrag enthält. Der Output der KI wird übernommen und die Person beansprucht die Autorschaft dennoch für sich. Schreibkompetenz reduziert sich auf Prompting-Kompetenz.
  • Als Writing Partner schreibt die KI zusammen mit der Person, die das LLM bewusst und zielorientiert beim Schreiben miteinbezieht, sei es stellenweise, z.B. nur beim Überarbeiten, oder während allen Phasen des Schreibens. Die KI hat die Rolle einer Ko-Autorin. Im Vergleich zur Ghostwriter-Praktik interagiert der Mensch hier dynamisch und bringt sich selbst als Autor ein. Analog zu Ghostwring-Praktiken besteh die Gefahr, Fehlinformationen zu erhalten. Um ein LLM als Writing Partner zu nutzen, bedarf es hoher Lese- und Schreibkompetenzen. Die Person muss in der Lage sein, die Schreibaktivitäten metakognitiv zu steuern und entscheiden können, welche Art von KI-Einbezug zu welchem Zeitpunkt sinnvoll ist.
  • In der Rolle als Writing Tutor unterstütz ein KI-Bot eine Person beim Schreiben, indem er der schreibenden Person als «Quasi-Lehrperson» gegenübertritt. Die Person nimmt das LLM interagierend als Lerner:in in Anspruch.
Welche Rolle nimmt die KI bei der Unterstützung beim Schreiben ein? (Quelle: Adobe Stock)

Implikationen für das wissenschaftliche Schreiben mit KI: ein Diskussionsvorschlag

Im Folgenden werden die KI-Rollen anhand von Beispielen hinsichtlich ihres Potenzials fürs Lernen durch das Schreiben beurteilt. Hierbei wird auf prototypischen Phasen des Schreibprozesses – Planen, Formulieren, Überarbeiten – eingegangen. Die Beurteilung erfolgt anhand einer Ampel-Logik, wobei rot eine kritisch anzusehende, orange und grün eingefärbte KI-Praktiken legitime, aber im Falle des Writing Partners mit Vorsicht einzusetzende Rollen darstellen. Die Begründung zu den Urteilen folgt danach.

PLANENFORMULIERENÜBERARBEITEN
Ghostwriter

– Skizze oder Inhaltsverzeichnis für einen Text generieren (strukturell und inhaltlich) und übernehmen
    – Text ausformulieren lassen auf Basis von Prompts
    – Zusammenfassungen generieren
    – Fazit formulieren
– Text inhaltlich, strukturell, stilistisch und/oder formal revidieren lassen.
Writing Partner

– eigene Ideen weiterentwickeln
– Strukturvorschläge zu definierten Inhalten generieren
– Brainstorming mit integraler Plausibilitäts- und Wahrheitsprüfung
– Hypothesen formulieren aufgrund zuvor festgelegter Variablen
– Reformulieren der Fragestellung
– einen selbst geschriebenen Abschnitt kürzen
– Formulierungs-alternativen generieren
– Text inhaltlich, strukturell, stilistisch und/oder formal revidieren lassen, dabei Überarbeitungen hervorheben lassen und die Eignung der Revisionen selbst überprüfen
Writing Tutor

– Geplante Textstruktur auf Schlüssigkeit prüfen lassen
– Feedback zur Passung der geplanten Inhalte zu einer Fragestellung evaluieren lassen
– Tipps zum Vorgehen bei der Textplanung oder zur Recherche einholen
– Textsortenspezifische Formulierungshilfen erfragen
– Tipps zum Vorgehen beim Formulieren einholen
– Verschiedene Stile aufzeigen
– Rückmeldungen zur Lesefreundlichkeit, Satzlänge und zur Wortwahl einholen
– Feedback zu aufgabenbezogenen Passung von Inhalt, Struktur, Stil und/oder Korrektheit generieren und begründen lassen
– Tipps für die Schlussredaktion einholen
– Überarbeitungsvorschläge priorisieren lassen

The good, the bad and the buddy

Zur Beurteilung der Frage, welche Rolle der KI-Anwendung in welcher Phase des Schreibens lernförderlich und legitim ist, muss zunächst geklärt werden, was epistemisches Schreiben ist oder anders gefragt: Unter welchen Bedingungen ist Schreiben förderlich für das Fachlernen?

Dieser Frage liegt eine Vielzahl von weitverzweigten Theorien und empirische Arbeiten zugrunde, die hier nur sehr verkürzt und unvollständig erläutert werden. Der Nachweis, dass (Fach-)Lernen durch Schreiben erfolgt, wurde vielfach postuliert, theoretisch modelliert sowie empirisch nachgewiesen (z. B. Meta-Analysen von van Dijk et al. 2022; Graham et al. 2020; Bangert-Drowns et al. 2004). Es existieren mehrere Modelle, die die Funktionsweise des Lernens durch Schreiben beschreiben. Das verbreitete Modell von Galbraith und Baaijen (2018) geht davon aus, dass inhaltliche Konzepte als mental verknüpfte semantische Einheiten im Langzeitgedächtnis gespeichert sind. Beim Schreiben greift die schreibende Person auf dieses Repertoire zurück. Um ihr Schreibziel zu erreichen, aktiviert sie die gespeicherten Verknüpfungen in Syntheseprozessen, überprüft diese und fügt gegebenenfalls weitere Ideen aus bereits gespeicherten semantischen Einheiten oder externen neue Quellen hinzu. Im Prozess dieser Wissensaktivierung und -transformation findet Lernen statt.

Aus dieser Perspektive werden die drei KI-Rollen wie folgt eingeschätzt:

  • Ghostwriter: Keine oder minimale Notwendigkeit der Informationstransformation eigener Wissensbestände sowie kognitiver Syntheseprozesse in Bezug auf den Lerngegenstand. KI-Anwendung ersetzt den Lernprozess oder kürzt ihn ab. Prompting-Kompetenzen ersetzen Schreibkompetenzen.
  • Writing Partner: Wissensaktivierung und -transformation ist erforderlich. Die KI-Rolle unterstützt den Lernprozess, sofern die Sinnhaftigkeit und der Zeitpunkt der KI- Anwendung metakognitiv bewusst gesteuert sind sowie die Bereitschaft und die Fähigkeit vorhanden sind, Informationen des Outputs in eigene Wissensbestände zu integrieren und damit eigenes Wissen zu transformieren.
  • Writing Tutor: Wissensaktivierung und -transformation ist erforderlich. Eigene Textproduktion steht im Mittelpunkt. Unterstützung beim (strategischen) Vorgehen durch Instruktionen und Feedback der KI. Die KI-Rolle unterstützt den Lernprozess.

Fazit: Augen auf beim Prompten! 

Die drei KI-Rollen lassen sich nicht immer klar voneinander abgrenzen. Vor allem die Übergängen zwischen der Partner- und der Tutoren-Rolle sind fliessend. Die Heuristik zu diesen KI-Rollen, die in der obigen Tabelle beispielhaft Mensch-Maschine-Interaktionen in verschiedenen Phasen des Schreibprozesses aufführt, verstehen sich als Diskussionsbeitrag, um den sinnvollen und legitimen KI-Einsatz zu planen und zu reflektieren. Das hier angelegte Ampelsystem ist nicht apodiktisch zu verstehen. Auch die Ghostwriter-Rolle kann beim Schreiben unter Umständen lernförderlich sein. Etwa dann, wenn der Output als musterhaftes Beispiel einer Textsorte oder einer Formulierung studiert und dessen Merkmale analysiert werden. Solche Analysen können dabei helfen, Wissen über Textsorten aufzubauen.

Ein absolut zentraler Aspekt bei allen Formen der KI-Anwendung in Wissenskontexten ist der zweifelhafte epistemische Status der KI-Ausgaben. LLMs garantieren aufgrund ihrer Funktionsweise keine verlässlichen Outputs können keine Verantwortung für die Richtigkeit von Informationen übernehmen. Aus diesem Grund sprechen wissenschaftliche Publikationsinstanzen – z.B. Nature – den LLMs eine Autorschaft ab. Jede KI-Ausgabe muss deshalb minutiös daraufhin überprüft werden, ob sie wahr, vollständig, verzerrt und für das eigene Vorhaben relevant und valide ist. Dabei gilt: Je höher das Ausmass an Delegation von Schreibaufgaben an die KI ist, desto höher ist die Notwendigkeit, Informationen zu prüfen. Die KI-Anwendung Ghostwriter macht die Prüfung des Outputs unausweichlich, auch für die Writing-Partner-Rolle ist sie notwendig und für die Writing-Tutor-Anwendung mindestens empfohlen. Diese Prüfverfahren setzen digitale Lesekompetenzen voraus, die als «epistemisch wachsames Lesen» (Philipp 2021; 2023) bezeichnet werden. Verkürzt gesagt, versteht man darunter Fähigkeitenbündel, um die Plausibilität von Aussagen, die Vertrauenswürdigkeit von Quellen, die Kohärenz von Aussagen oder die Entstehung und Interpretation von Daten zu evaluieren. Es sind in erster Linie diese Fähigkeiten, die für das Lernen durch Schreiben mit KI geschult werden müssen und dies mit Vorteil zusammen mit einem Menschen in der Rolle eines Reading Tutors.

INFOBOX

Das Schreibzentrum der PH Zürich bietet Module zum Schreiben an, in denen KI-Aspekte thematisiert werden:

Schreiben begleiten und beurteilen (Start: 17. März 2025)
Wissenschaftliches Schreiben (Start: 23. September 2025)


Auch für literarische Zugänge zum Schreiben finden Sie beim Schreibzentrum Angebote – z.B. das Modul Biografisches Schreiben (Start: 30. April 2025).


Einzelpersonen, Teams und Organisationen bietet das Schreibzentrum Weiterbildungen und Schreibberatungen in Form von Coachings, Kursen oder Workshops an. Kontaktieren Sie uns! schreibzentrum@phzh.ch

Zum Autor

Alex Rickert ist Leiter des Schreibzentrums und ist als Dozent in Weiterbildungsgefässen aktiv. Seine Arbeits- und Forschungsschwerpunkte sind Textlinguistik, Schreibberatung und -didaktik.

Potential offener Formate  – Learnings vom Barcamp Curriculumentwicklung

Text: Tetiana Kaufmann, Monika Schlatter, Franziska Zellweger

Herausforderung Curriculumentwicklung

Teilnehmende des Barcamp Curriculumentwicklung.
Teilnehmende des Barcamp Curriculumentwicklung. Foto: Giuseppa Kälin

Der Wechsel zu Kompetenzorientierung, Modularisierung und Bachelor-Masterabstufung führte in den letzten Jahren zu zahlreichen Reformen von Studienprogrammen. Die Implikationen der Digitalisierung, nicht zuletzt die rasante Entwicklung generativer KI auf Bildungsziele, Lern- und Prüfungsformate sowie die zunehmende Heterogenität der Studierenden treiben diese Entwicklungen weiter voran.

(Weiter-) Entwicklungen von Studienprogrammen sind daher anspruchsvoll. Es gibt zahlreiche Bedürfnisse und Ideen vieler Beteiligter, die begrenzten Ressourcen und spezifischen Rahmenbedingungen gegenüberstehen. Fragen, die sich im Zusammenhang mit einer Curriculumentwicklung stellen, sind daher komplex, und entsprechend herausfordernd ist die Gestaltung von Entwicklungsprozessen.

Mit dem Barcamp Curriculumentwicklung wollten wir einen Beitrag dazu leisten, Personen im tertiären Bildungsbereich ihre Erfahrungen, Herausforderungen und Erfolge bei der Curriculumentwicklung teilen zu lassen. Ebenso sollte so der Austausch innovativer Ideen und Konzepte gefördert und einen Anstoss für Lösungen gegeben werden. Anfang November 2023 sind in diesem Zusammenhang über 60 Personen aus Fach- und Pädagogischen Hochschulen wie auch Höheren Fachschulen auf Schloss Au zusammengekommen. Während einige Anliegen aus bereits laufende Studiengänge mitbrachten, standen andere noch am Anfang des Prozesses und liessen sich für die bevorstehenden Aufgaben inspirieren.

Ein Barcamp ist eine offene und partizipative Veranstaltung, an der von den Veranstaltern zu Beginn nur Zeitfenster und Räume festgelegt werden. In einem gemeinsamen Prozess mit den Teilnehmenden werden die Themen festgelegt. Im Zentrum der daraus entstehenden Sessions steht die Diskussion, wobei ein mitgebrachtes Fallbeispiel, Erfahrungen oder Fragen der Teilnehmenden als Initiator dienen. Mehr Infos zu Barcamps

Barcamp Curriculumentwicklung: Konkrete Einblicke und Learnings

Im Folgenden geben wir einen chronologischen Einblick in die konkrete Durchführung des Barcamps und legen dar, welche Erkenntnisse wir mit diesem offenen Weiterbildungsformat gewonnen haben.

 

1. Zeit in das Kennenlernen investieren

Um auch bei über 60 Teilnehmenden gleich eine erste Verbindung zwischen den Personen zu schaffen, haben wir die Veranstaltung mit einem mündlichen Soziogramm eröffnet. Die Moderatorin rief verschiedenste Fakten aus, und Personen, auf die diese zutrafen, hoben die Hand. So wurde rasch sichtbar, aus welcher Institution und welcher Landesregion die Teilnehmenden stammten und es wurde Transparenz über die Rollen oder Funktionen geschaffen. Unterstützt wurde die Kontaktaufnahme auch mit einer ausführlichen Teilnehmendenliste. Dieses Kennenlernen wurde sehr positiv wahrgenommen. Genügend Zeit dafür einzuplanen, lohnt sich. Eine Alternative zum mündlichen Soziogramm könnte auch ein Speeddating sein.

Mündliches Soziogramm in Aktion.
Mündliches Soziogramm in Aktion. Foto: Giuseppa Kälin

 

2. Themenstrukturierung schon vor dem Anlass

Die gemeinsame Programmplanung und das Identifizieren gemeinsamer Fragen ist ein wichtiger Schritt eines Barcamps. Dabei ist es eine Herausforderung, nicht zu viel Zeit mit der Planung des Tages zu verbringen, sondern genügend Raum für Vernetzung und Austausch zu schaffen.

Die Teilnehmenden waren daher aufgefordert, schon vor dem Barcamp mögliche Fragestellungen einzugeben. Aus diesen haben wir vier Hauptthemen identifiziert und durch Leitfragen präzisiert, welche auf der digitalen Pinnwand Taskcards veröffentlicht und den Teilnehmenden vorgängig zur Verfügung gestellt wurden. Diese Vorstrukturierung der Themen erlaubte es, die Interessen der Teilnehmenden transparent zu machen und gleichzeitig einen effizienten Programmfindungsprozess entlang der vorstrukturierten Themen zu gestalten.

Vier Themen mit Leitfragen
1. Prozessgestaltung • Wie kann man ein Curriculum trotz knapper werdenden (finanziellen) Ressourcen weiterentwickeln? • Wie geht man mit Widerständen und starren Verwaltungsprozessen um? • Welche Rolle spielt Partizipation in der Curriculumsentwicklung und wie kann sie effektiv koordiniert werden?
2. Individualisierung in der Hochschulbildung • Was sind Best Practices und neue Tendenzen in der Begleitung von Studierenden (auch in grossen Studiengängen)? • Wie können Hochschulen bei begrenzten Ressourcen den wachsenden Anforderungen an Individualisierung begegnen? • Wie kann man individuelle Bedürfnisse berücksichtigen und gleichzeitig Kohärenz gewährleisten?
3. Future Skills und Entwicklung zukunftsfähiger Curricula • Welche Trends müssen jetzt in der Curriculumsentwicklung vorrangig begegnet werden? • Welche curricularen Strukturen bzw. Studienmodelle ermöglichen die Entwicklung nachhaltiger, kompetenzorientierter Curricula, die unserer schnelllebigen Zeit gerecht sind? • Wie kann man KI-Tools sinnvoll einsetzen und gleichzeitig das Deep-Learning unterstützen (z.B. im Sprachunterricht)?
4. Kompetenzorientierte Leistungsnachweise • Welche innovative Beurteilungsformate und Zusammenarbeitsformen (z.B. Stud.-Dozis) fördern eine kompetenzorientierte Lehre? • Wie kann man bei begrenzten Ressourcen individuelles Feedback geben und optimal Peer Assessment einwenden? • Was sind Best Practices in der Messung und Anrechnung bereits erbrachter Leistungen/Erfahrungen?

 

3. Klar gestaltete Sessionplanung

Dafür teilten sich die Teilnehmenden in vier Gruppen zu je einem Thema ein und arbeiteten an einer vorbereiteten Pinwand. Wer eine Fragestellung eingegeben hatte oder neu mitbrachte, stellte diese innerhalb einer Minute vor (Pitch). Ähnliche Fragestellungen wurden dann zusammengeführt, so dass im Ergebnis jede Gruppe je drei Sessions (Zeit- und Raumfenster) definierte.

Strukturierung der Sessionplanung
Strukturierung der Sessionplanung

Wieder im Plenum, wurde der gesamte Plan aller vier Gruppen vorgestellt. Danach waren die Teilnehmenden frei darin zu entscheiden, in welchen der vielen Sessions sie beitragen möchten. Die Vielfalt an spannenden Fragen bedeutet auch eine gewisse Qual der Wahl: Mehrere Durchführungen von Sessions könnten sich lohnen.

 

4. Ideale räumliche Rahmenbedingungen

Wenn viele engagierte Personen gemeinsam diskutieren und die finalen Themen festlegen, entsteht eine nicht zu unterschätzende Geräuschkulisse, und auch ein vermeintlich grosser Raum wird plötzlich zu klein. Es ist zwar ein Vorteil, wenn die ganze Gruppe für die Festlegung des Programms in demselben Raum arbeiten kann, da die Moderation den Gesamtprozess gut im Blick hat. Auch die Teilnehmenden können so wahrnehmen, wie die anderen Gruppen arbeiten. Je nach räumlichen Gegebenheiten kann es dennoch sinnvoll sein, an unterschiedlichen Orten zu diskutieren, da ein konzentriertes Gespräch von einem ruhigen Rahmen profitiert. Darüber hinaus zeigte sich das Schloss Au auch bei regnerischem Wetter als idealer Ort für ein solches Format. Das gastfreundliche Schlossambiente mit inspirierendem Garten und vielen Gruppenräumen bot einen wohltuenden Kontrast zur üblichen Hektik. Die Teilnehmenden konnten voll in das Barcamp eintauchen und die Laptops blieben in der Tasche.

Teilnehmende des Barcamps bei der Themenauswahl.
Teilnehmende des Barcamps bei der Themenauswahl. Foto: Giuseppa Kälin

 

5. Rollenverteilung in den Sessionen vorab definieren

In den Sessions brauchten die neu formierten Gruppen jeweils eine Weile, bis sie sich gefunden hatten. Da die Zeit an einer solchen Veranstaltung knapp ist, würden wir zukünftig eine klare Rollenzuteilung mit vordefinierten Zuständigkeiten (Lead der Session, Moderation, Dokumentation, Zeitmanagement) vornehmen.

 

6. Ergebnisse sichtbar und greifbar machen

Um die Diskussionen und Erkenntnisse aus den Sessions für alle Teilnehmenden sicht- und greifbar zu machen, haben wir darum gebeten, die Ergebnisse der Sessions auf Taskcards zu dokumentieren.

Teilnehmende bei der Reflexionsrunde.
Teilnehmende bei der Reflexionsrunde. Foto: Giuseppa Kälin

In einer Schlussrunde im Umfang von 20 Minuten entlang der Methode 1-2-4-all von Liberating Structures haben in einem ersten Schritt alle Teilnehmenden persönliche thematische Erkenntnisse und noch offene Fragen in einer kurzen Einzelreflexion identifiziert. Im danach folgenden Austausch in Zweiergruppen wurden die Gedanken geteilt und weiterentwickelt, um anschliessend in Vierergruppen die Diskussion weiter zu vertiefen und Erkenntnisse sowie offenen Fragen zu notieren. Diese prägnanten Sätze und Stichworte wurden dann mit allen Teilnehmenden geteilt.

Fazit

Selten haben wir Weiterbildungstage in so disziplinierter und arbeitsamer Atmosphäre erlebt. Die Feedbacks der Teilnehmenden haben klar aufgezeigt, dass sie sehr viel aus dem offenen Format mitnehmen konnten. Die wertvollen Diskussionen auf Augenhöhe, Inspiration und Vernetzung standen dabei zuoberst. Diese Erfahrung hat uns gezeigt, dass bei anspruchsvollen Fragestellungen wie in der Curriculumsentwicklung offene Formate wie ein Barcamp der richtige Weg sind, gemeinsam an Lösungen zu arbeiten und dabei gerade zu erleben, wie kraftvoll offene und partizipative Formate sein können.

Mehr Offenheit hat sich auch als zentrales Thema durch die Sessions gezogen. Viel Interesse weckten unter anderem Beispiele individuellerer Lehr-/Lernformaten und Prüfungsformen. Das Ziel dabei bleibt klar: Studierende auf die Lösung komplexer Fragestellungen vorzubereiten, denen sie zunehmend in ihrer Arbeits- und Lebenswelt begegnen werden.

INFOBOX

CAS Weiterbildungsdesign

Die Weiterbildung befindet sich in einer anspruchsvollen Entwicklungsphase. Es wandeln sich die Ansprüche der Zielgruppen, der Digitalisierungsschub wirkt nachhaltig und die Diversität der Teilnehmer:innen nimmt zu. Die damit verbundenen veränderten Lehr- und Lernkonzepte fordern eine diversifiziertere Programm- und Angebotsplanung. Dieser CAS befähigt Sie dazu, als Fachspezialist:in für Weiterbildungsdesign zeitgemässe und wirksame Bildungsprogramme in der Weiterbildung zu konzipieren.
Weitere Informationen zum CAS Weiterbildungsdesign


CAS Führen in Projekten und Studiengängen an Hochschulen

Fachleuten aus Fachhochschulen, Universitäten, Pädagogischen Hochschulen, Höheren Fachschulen und weiteren Bildungsinstitutionen ermöglicht dieser CAS massgeschneidert und laufbahnbezogen die Entwicklung rollenspezifischer Kompetenzen in den Bereichen Führung, Management und Planung. Essentielle Kernelemente sind Praxisorientierung und der Transfer in den eigenen Kontext.
Weitere Informationen zum CAS Führen in Projekten und Studiengängen an Hochschulen

Zu den Autorinnen

Schreiben an Hochschulen in Zeiten von KI – das tiefe Nachdenken wird zukünftig noch nötiger

Text: Maik Philipp

Wenn wir Texte an der Hochschule schreiben, verfolgen wir damit häufig den Zweck, Wissen zu dokumentieren, es zu kritisieren oder es weiterzuentwickeln. Dabei stützen wir uns zum einen auf Wissensquellen wie andere Texte, aber auch auf unsere eigenen Ideen. Was für Forschende gilt, wird auch für das Lernen im Rahmen des Studiums beansprucht. Diese traditionelle Sicht auf das, was «epistemisches Schreiben» genannt wird, hat sich zu verändern begonnen, seitdem mit ChatGPT ein Game Changer aufgetreten ist, dessen mögliche Auswirkungen zurzeit Gegenstand von umfassenden Abwägungen sind. Automatische Textproduktion mittels Large-Language-Models ist die vorerst letzte, aber bei Weitem nicht einzige technologisch basierte Etappe in der offenen Frage, wie wir hochschulisches Lernen und Lehren betreiben wollen, wenn neue Technologien aufkommen.

Reine Reproduktion beim Schreiben und die Ausweichmöglichkeiten

Vielleicht ist es gar nicht unbedingt die technische Seite, die im Kern das Problem ausmacht. Die Frage, die sich stellt, wenn Algorithmen Texte herstellen, betrifft natürlich Chancen der Arbeitserleichterung und Risiken der Eigenleistungsbestimmung. Aber sie tangiert doch viel mehr eine andere Grundsatzthematik: Wozu und was schreiben wir denn an den Hochschulen noch bzw. lassen wir schreiben? Damit sind unweigerlich Zielvorstellungen angesprochen und infolgedessen wiederum die Notwendigkeit, sich über diese Ziele Gedanken zu machen. Solche Klärungsnotwendigkeit besteht freilich nicht nur bei den Prüfungsformaten, sondern zusätzlich bei den Lernaufgaben, ja: beim Lernen allgemein.

Dabei müssen wir keineswegs wieder von Null starten. Die Lehr-Lern-Forschung hat sich intensiv damit beschäftigt, wie das Schreiben das Fachlernen unterstützt und welche Arten von kognitiven Prozessen und welche Arten von Wissen für das Lernen unterscheidbar sind. Dabei wird schnell deutlich, dass es verschiedene Facetten des Lernens gibt, die sich darin unterscheiden, wie stark Gegenstände im Rahmen des Lernens kognitiv verändert werden müssen. So kann zum Beispiel unterschieden werden, ob man eine Theorie nur wiedergeben, ihre Logik und Anwendungsgebiete erläutern, sie auf einen Fall anwenden, sie mit einer anderen Theorie vergleichen oder begründet kritisieren soll. Je nach Aufgabe müssen Lernende zu sehr unterschiedlichen Dingen kognitiv in der Lage sein. Nicht alles davon ist in allen Fällen immer gefragt oder sinnvoll, aber entscheidend ist, dass wir Lernaufgaben profilieren und charakterisieren können, welche Prozesse sie einfordern und welche Wissensarten sie touchieren. Wir können zudem kartieren, welche Prozesse und Produkte des Denkens höherer Ordnung wir lesend und schreibend an Hochschulen nutzen wollen und wie wir Enkulturation in Wissensgemeinschaften mit dem Schreiben verbinden.

KI-generierte Texte müssen von kritisch denkenden Personen eingeschätzt werden.

Was automatische Textproduktion zumindest ansatzweise kann, ist das Reproduzieren von Inhalten auf der Basis von Mustererkennung in riesigen Textkorpora, anhand derer der Algorithmus trainiert wurde. Dass Tools wie ChatGPT diese Reproduktion sprachlich auf hohem Niveau leisten, mag arbeitserleichternd sein, aber es entbindet nicht davon, wozu Personen schreibend in der Lage sein müssen: einem evaluierenden Verarbeiten, welches seinerseits Verstehen voraussetzt. Ein ChatGPT-Text ist zunächst ein Angebot. Dessen Eignung oder Nicht-Eignung, seine Richtigkeit, seine Angemessenheit und seine Verwertbarkeit bemessen sich daran, dass die Texte von kritisch denkenden Personen eingeschätzt werden müssen. Hier bestehen Ausweichmöglichkeiten für die Hochschullehre, die teils zutiefst in das hineinragen, was zum Beispiel im Falle des naturwissenschaftlichen Lernens gefordert wird. Wir können und sollten uns darum Lern- und Leistungsaufgaben überlegen, welche das Denken höherer Ordnung fördern und fordern. In diesen Aufgaben sollte weniger die Reproduktion eine Rolle spielen als die begründete und begründbare Evaluation von Aussagen und ihrem Geltungsanspruch als Wissen.

Prüfen von Aussagen als immer wichtiger werdende Fähigkeit: Was ist weshalb wahr und wer ist warum vertrauenswürdig?

Was es – nicht nur bei KI-basierten Texten – zu prüfen gilt, ist die Plausibilität, also die potenziell zugeschriebene Wahrheit von Aussagen, und die Vertrauenswürdigkeit von Quellen hinter der Aussage. Die Leseforschung nennt dies Erste- und Zweite-Hand-Einschätzung. Die Zuweisung von Plausibilität als Erste-Hand-Einschätzung ist an Wissen über den Gegenstand, kohärentes Begründen von Aussagen und auch die Produktion von wissensbezogenen Aussagen gebunden. Die Bestimmung der Vertrauenswürdigkeit als Zweite-Hand-Einschätzung bemisst sich daran, welchen Personen und Organisationen zugestanden wird, sich inhaltlich qualifiziert und gesellschaftlich wohlwollend zu äussern, weil Expertise und Redlichkeit unterstellt werden. Solche Zweite-Hand-Beurteilungen von Aussagen werden von ChatGPT zwar erschwert, aber sie sind dadurch nicht unwichtiger geworden – im Gegenteil. Vielmehr geht es zunehmend um die Abwägungen, was warum wahr ist und wie wir sinnvoll vorgehen, um begründbare und ausreichend sichere Antworten auf diese Frage zu finden. Anders gesagt: Das tiefe Nachdenken und mit ihm eine Entschleunigung wirken nötiger denn je.

Damit ist ein Bündel von Fähigkeiten angesprochen, welches in der Leseforschung schon seit Längerem als wichtig erachtet wird und durch die Zunahme an digitalen Texten und Dokumenten noch an Bedeutung gewonnen hat. ChatGPT und andere KI-Applikationen werden diese Fähigkeiten mutmasslich nicht weniger wichtig werden lassen. Darin liegt auch eine Chance, Lern- und Lehrprozesse an den Hochschulen anzupassen.

INFOBOX

Das Schreibzentrum der PH Zürich pilotiert derzeit Kurse für Studierende und Dozierende. Im Kern der Angebote stehen Prozesse des Lernens. Die Erfahrungen werden voraussichtlich am Tag der Lehre der PH Zürich (2. Februar 2024) im Workshop «Los, KI, denk für mich?! Lernen und Lehren mit Texten» vorgestellt.

Zum Autor

Maik Philipp ist Professor für Deutschdidaktik an der PH Zürich. Seine Schwerpunkte sind Lese- und Schreibförderung mit Fokus auf Evidenzbasierung.

Promoting Authentic Assessment in the Age of Artificial Intelligence

Text: Mònica Feixas

In the actual context of higher education, the emergence of artificial intelligence (AI) tools introduces a multitude of challenges to conventional assessment practices. While we are witnessing that certain teaching and learning activities may eventually be performed by AI to a relatively good standard, we cannot fully rely on the generated content because it can exhibit deficiencies in accuracy, comprehending context, coping with intricate analysis or being ethical. For rigorous scholarly pursuits, it is necessary to empower students to critically discern and interpret data, to identify bias and ensure fairness, and to make choices aligned with human values, that is: to form evaluative judgements (EJ). This blog is about practices that foster EJ within the context of authentic assessment tasks, answering questions such as: What precisely constitutes an authentic assessment task? What practices promote EJ in the context of authentic assessment tasks? How can we effectively leverage tools like ChatGPT to facilitate the development of evaluative judgement?

Can artificial intelligence give you a realistic assessment of your work? (Image source: Adobe Stock)

Authentic Assessment Tasks in Higher Education: a Response to traditional Assessments

Authentic assessment tasks have emerged as a meaningful response to address the limitations of conventional assessment methods in higher education (Clegg & Bryan 2006). They require students to perform as professionals within the actual social and physical contexts of a specific field, demanding the demonstration of skills and knowledge reflective of real-world scenarios.  

Authentic assessment aims to replicate the tasks and performance standards typically found in the world of work and has been found to have a positive impact on student learning, autonomy, motivation, self-regulation and metacognition; abilities highly related to employability.

(Villarroel et al. 2018)

Different displays of knowledge and performance can be encouraged based on the selected assessment formats employed to assess students‘ learning:

Figure 1: Continuum from traditional to authentic assessment approaches (own elaboration)

While traditional assessment formats focus on the demonstration of Knowing (e.g. through factual tests or MCQs) or Knowing How (context-based tests, MCQs, problem solving), authentic assessment also emphasize Showing How (performance based, objective school observations, problem-based learning, scenarios, portfolios) and Showing Doing (performance based tasks, work/professional experience, patient care, pupils’ teaching) (Sambell & McDowell 1998)

Designing authentic tasks can be done by following the five-dimensional framework from Gulikers, Bastiaens and Kirschner (2004) (reproduced in Figure 2) with pertinent questions in relation to each dimension. Another alternativ is Sambell’s guide. In both cases, effective assessments work in tandem with teaching and learning activities to help students develop long-term approaches to learning.

Figure 2: Framework for designing authentic assessment (adapted from Gulikers, Bastiaens and Kirschner 2004

Examples of authentic assessment tasks can be found in Jon Mueller’s Authentic Assessment Toolbox, or Kay Sambell and Sally Brown.

Evaluative Judgement: a crucial Skill in the Age of AI 

Following Villarroel et al. (2018), authentic assessments should include at least three components: 

  • Realism, to engage students with problems or important questions relevant to everyday life; 
  • Cognitively challenging tasks that prompt students to develop and use higher levels of thinking to use knowledge, process information, make connections and rebuild information to complete a task (rather than low-level recall or reproduction of facts); 
  • Opportunities to develop Evaluative Judgement and enhance the self-regulation of their own learning. 

Evaluative judgement is the capability to make decisions about the quality of work of oneself and others.

Tai et al. (2018)

In the age of AI, supporting students navigate the fake news world, veracity of data and reflect the work being presented by ChatGPT or other artificial intelligence tools is crucial. It is only possible if students develop a deep understanding of topics and of quality and help them assess quality of a product or performance. EJ is all about engaging with grading criteria, improving the capacity to appreciate the features of «quality» or excellence in complex outputs and developing the ability to provide, seek and act upon feedback. 

EJ is additionally a skill that interacts with self-regulated learning. When students develop an understanding of quality, they are better able to apply feedback, and become less reliant on external sources of feedback. Students who can self-regulate and judge their own work can be more autonomous in their learning. It is suggested that students with these attributes may make a smoother transition into the workforce (Tai et al. 2018)

EJ is also relevant from a perspective of inclusive education. A Delphi Study with 10 international experts on authentic and inclusive assessment showed that activities which develop EJ include discussions of quality with their students, listen to students‘ perspectives and have the potential to be more inclusive by ensuring that all students have a shared understanding of standards and criteria (Feixas & Zimmermann 2023).

Practices supporting the Development of Students’ evaluative Judgement

In order to apply EJ we have to consider its two key components: the contextual understanding of the quality of work, and the judgement (and articulation thereof) of specific instances of work. This can be applied to the work or performance of both self and others.   

Research suggest the following practices to developing the EJ components (Bouwer et al. 2018; Tai et al. 2018; Sridharan & Boud 2019):

  1. Exemplars:  
  • Students receive various examples of expected standards for evaluating their own and others‘ performance, including progress notes, reports, learning goals, reflection sheets, and intervention strategies. They are provided alongside grading criteria, and can be used for  review, or students can discuss exemplar assignments in groups. 
  • Video-feedback, like «live marking» screencasts, can also be utilized to demonstrate different levels of work quality. See the three examples by Dr. Nigel Frances (University of Swansea):  
  1. Assessment criteria and rubrics: 
  • Checklists, templates, or rubrics are provided to help students reflect on their achievement of competencies. 
  • Students engage with criteria by discussing the meaning and distinguishing features of work at each level of the rubric. 
  • Involving students in translating generic grade descriptors into assignment-specific grading criteria, and involving students in designing own rubrics with ChatGPT enhances their understanding. 
  1. Peer-review and feedback: 
  • Students engage in providing feedback on their peers‘ work-in-progress based on the grading criteria, focusing on elements where they can offer valuable insights, such as i.e. argument strength in the case of a ChatGPT-text. 
  1. Self-appraisal or self-assessment:  
  • Students appraise their own work against grading criteria to show their development of EJ.  
  • They submit cover sheets where they self-assess their work before assessment and receive feedback about it. Such feedforward supports improvement from one task to another (Sadler, Reimann & Sambell 2022).   
  • This higher-level thinking process involves reflection, identifying potential improvements, and working towards integration in an ongoing manner. 

A fictitious Example of an Authentic Assessment Task in an Educational Psychology Course and the Use of ChatGPT to enhance Evaluative Judgement Practices

Task-Title: Inclusive Education Initiatives – An Educational Psychology Project for Social Impact 

In this group task, students design an inclusive education initiative that not only addresses educational psychology principles but also seeks to foster diversity, equity, and inclusion in educational settings. The goal is to create a project that promotes an inclusive learning environment, where every pupil thrives academically and socially. Rubrics, self-and peer-assessment options, exemplars, and feedback are practices deployed to strengthen their evaluative judgement skills.  

Part 1: Identifying the Need

Students conduct research on challenges in marginalized communities‘ access to quality education. They are allowed to use AI-tools after their initial research to broaden their understanding of the educational psychology concepts related to the identified communities. AI can assist, for example, in providing new data, visualisations, translating information from other languages, condensing content summaries or responding questions. Students‘ critical analysis and ethical review of the generated content is crucial in interpreting results and making summaries or recommendations. The teacher afterwards provides feedback to the groups to improve the needs assessment. 

Part 2: Project Design

Based on their research, students develop evidence-based inclusive education initiatives. ChatGPT can be utilized to help students with intervention strategies, best practices, and approaches used in similar contexts. A possible prompt is: «Identify evidence-based interventions that have demonstrated success in narrowing the education gap among underserved populations.» Peer-assessment is encouraged to critically evaluate their different project designs and identify differences between versions of ChatGPT. Groups include improvements done after peer-feedback. 

Part 3: Social Impact Assessment

Students describe the potential social impact of their initiatives and self-evaluate it with a rubric containing criteria about how the project can contribute to breaking down barriers, promoting social cohesion, and enhancing educational opportunities for the targeted group. 

Part 4: Stakeholder Engagement

Students present their projects to stakeholders and utilize feedback to enhance their engagement strategies, ensuring buy-in and long-term sustainability. After the presentation and before the final submission, teacher offers exemplars based on successful projects in similar contexts. 

Final Reflection:

Students utilize a rubric to self-assess their projects, reflecting on strengths, limitations, and ethical considerations. The final project is submitted alongside an individual reflection highlighting aspects of the use of EJ. Final feedback is provided by the teacher to foster growth and improvement.

INFOBOX

Empowering academics to promote Evaluative Judgement – three training opportunities:

We want to empower teachers to design authentic assessment practices to better create work-ready graduates, who are able to operate independently in rapidly evolving, technologically-enabled environments and to promote EJ as means to judge the quality of work through standards.
At ZHE, we offer a half-day course online on Authentic Assessment and Evaluative Judgement: «How to judge the quality of my own work and that of others, including ChatGPT? Evaluative Judgement in the context of authentic assessment tasks». 27th September 2023, 13–17h, online.

From February to May 2024, the PH Zürich offers a one-time course: «Beyond Exams: Designing Authentic Assessment and Feedback Practices». The 1.5 ECTS module takes place in the context of the international project «PEER-Net» of the Department Projects in Education (PH Zürich). The course is taught in a team-teaching format by experts in assessment and feedback of the Faculty of Education of the University of Pristina in Kosovo and the ZHE. The participation in this module includes a reciprocal visit (Swiss scholars to Kosovo and the colleagues of Kosovo to Zurich), classroom visits and discussion with students.

In the context of our CAS Hochschuldidaktik, the module «Assessment und Evaluation» offers a comprehensive exploration of these subjects. 26th October to 7th December, PH Zürich. Enrol now!

About the Author

Zwischen Technologie und Menschlichkeit

Text: Dominic Hassler und Monique Honegger

Wenn wir als Bildungsfachleute Curricula und Unterricht im Kontext von KI weiterentwickeln, sollten uns die Stärken und Schwächen von Künstlicher Intelligenz (KI) und von Menschen bewusst sein. Tools wie etwa ChatGPT erzeugen Texte, die solchen von Menschen gleichen. Allerdings produzieren sie Texte auf andere Weise. Vorliegender Beitrag ergründet, u.a. mit Bezug auf Ausführungen von Floridi (2014), worin dieser Unterschied besteht. Abschliessend identifizieren wir Fragen für professionelles Handeln zwischen Technologie und Menschlichkeit.  

Wir bauen keine Roboter, die wie ein Mensch Hemden bügeln und falten. (Quelle: Youtube)
Stattdessen bauen wir eine Kleiderfaltmaschine.
(Quelle: Facebook)

Menschen bauen Maschinen nicht mit dem Ziel, dass die Maschinen Aufgaben auf dieselbe Weise lösen wie Menschen. Andernfalls müsste ein Roboter am Spülbecken stehen und das Geschirr mit Schwamm oder Bürste reinigen. Stattdessen bauen wir einen Geschirrspüler (Luciano Floridi, 2014). Das Ingenieurwesen nennt dies «Enveloping» (dt.: umhüllen). Der Geschirrspüler fungiert als Hülle für die Maschine, die unser Geschirr reinigt. In dieser Hülle erledigt die Maschine ihren Job effizient und effektiv. Entsprechend ist eine Autobaustrasse eine grossformatige Hülle für Maschinen, die Autos zusammenbauen. Solche Umgebungen sind für Maschinen gemacht, nicht für Menschen. 

Diese «Hülle» ist nicht für Menschen gemacht. Rätsel: Wo ist der Mensch?
(Quelle: Adobe Stock)

Ähnlich verhält sich der Transfer von menschlichem Schreiben und einem Tool wie ChatGPT. Wenn ein Mensch einen Text verfasst, erfordert dies Intelligenz sowie für eine angemessene Performance als Erwachsener rund 20’000 Stunden Übung (vgl. Linnemann 2014, S. 27, Kellogg 2008, S. 4). Schreibt hingegen ChatGPT einen Text, braucht es beträchtlich Speicher und Rechenpower.  

Zahlreiche Prozesse unserer Welt sind automatisiert dank Maschinen, also in Envelopes gehüllt. Jeden Tag werden mehr Daten gesammelt, gibt es mehr Geräte, die miteinander kommunizieren, Tools, Satelliten, Dokumente, RFID, IoT – in einem Wort: mehr Enveloping. Darum kann es manchmal so aussehen, als ob Maschinen zunehmend «intelligenter» und Menschen «dümmer» werden. 

Beziehung zwischen Menschen und Technik

Stellen wir uns ein Menschen-Paar mit zwei unterschiedlichen Charakteren vor. Die eine Person ist fleissig, unflexibel und stur. Die andere Person ist faul, anpassungsfähig und nachgiebig. Ihre Beziehung funktioniert, weil sich die faule Person der fleissigen Person anpasst. Derzeit hüllen wir als Teil eines Paars (Mensch-Technik) immer grössere Teile unserer Umgebung in smarte ICTs. Mitunter prägen diese Technologien unsere physische und konzeptionelle Umwelt. Schliesslich ist KI die arbeitssame, aber unflexible Paarhälfte, während Menschen intelligent, aber faul sind. Es passt sich demnach der faule Part an, wenn eine Trennung keine Option ist (vgl. Luciano Floridi 2014, S. 150). Mensch und Maschine als gleichwertiges Paar auf Augenhöhe zu denken, entspricht einer Handlungslogik. Es gibt jedoch auch eine Sehnsuchts- und Angstlogik, respektive eine emotionale Interpretation, die medial weit verbreitet ist: diese geht von einer Dominanz des anderen Paarteils aus.

Mediale Omnipräsenz von «allgemeiner künstlicher Intelligenz»

In Filmen und Literatur und finden sich mächtige «allgemeine künstliche Intelligenz» als fiktionaler Alltag: von Olimpia im Sandmann (ETA Hoffmann) bis zu HAL 9000 in A Space Odyssey oder Skynet in Terminator. Gleichzeitig warnen und warnten Persönlichkeiten wie Stephen Hawking oder Elon Musk davor, dass eine künstliche Intelligenz sich irgendwann über die Menschheit erheben könnte. Ingenieur:innen von Microsoft verkündeten kürzlich, «Experimente mit ChatGPT 4.0 hätten einen Funken von allgemeiner KI gezeigt». Daraus liesse sich folgern, dass die Menschheit auf dem Weg ist, eine mächtige «allgemeine KI» zu entwickeln und aktuelle Schreibroboter wie ChatGPT der nächste Schritt auf diesem Weg sind. Ist diese Folgerung gerechtfertigt? Oder wir können auch anders fragen: Haben KI wie ChatGPT heute oder morgen das Potenzial etwas Bedeutungsvolles zu kreieren? 

Tippende Affen und unendlich viele Daten

Theoretisch kann KI etwas Neues oder Innovatives kreieren, wie das Infinite Monkey Theorem zeigt. Stellen wir uns eine unendliche Anzahl von Affen vor, die auf Schreibmaschinen tippen. Irgendwann verfasst ein Affe per Zufall Goethes Faust. Allerdings versteckt sich der Faust-Text in Galaxien von zusammenhangslosen Zeichen und Texten. Die tippenden Affen realisieren nicht, wenn ein für die menschliche Kultur bedeutsames Werk erschaffen wird. Kurz: Es gibt viel Produziertes, aber den produzierenden Affen entgeht der kulturelle, intellektuelle oder diskursive Wert des jeweiligen Textes. 

Bild einer papierüberquellenden Galaxis (Annäherung).
(Quelle: Adobe Stock)

Die schreibende Affenhorde lässt sich mit ChatGPT vergleichen: ChatGPT beherrscht die Syntax unserer Sprache fast perfekt. Daher entstehen keine Texte mit Schreibfehlern auf der Textoberfläche (Grammatik, Orthografie) und ChatGPT arbeitet etwas weniger zufällig als die unendlich vielen Affen. Gleichwohl müsste ChatGPT unzählige sinnfreie Wortkombinationen verfassen, um zufällig ein Kulturgut wie Faust zu kreieren. Aufgrund des Mooreschen Gesetzes (alle ca. 18 Monate verdoppelt sich die Leistung neuer Computerchips) können KIs bereits heute nahezu unendlich viele Texte kreieren. 

KI versteht jedoch nicht, was sie schreibt. Sie kombiniert aufgrund statistischer Werter, welche Worte zueinanderpassen. Etwas Bedeutungsvolles schafft sie per Zufall, ohne es zu merken. Diese Unbewusstheit der KI schmälert keineswegs ihr enormes Leistungspotenzial. Nützlich ist, dass KI auf Knopfdruck in riesigen Datenmengen weitere Worte und Begriffe findet, die zu einer Suchanfrage passen und daraus Text produziert. Die Resultate erinnern an Texte, welche fleissig sammelnde Lernende für die Schule verfassen. Nebenbei: oftmals ist es unabdingbar, solchen Lernenden zu feedbacken, dass ihr Text einen Fokus, eine diskursive Position sowie eine Verknüpfung der dargestellten Inhalte benötigt. 

Die Existenz solcher KIs wirft Fragen auf für die Bildungswelt, insbesondere für Schreibaktivitäten. Sinkt etwa die Motivation dafür, weil KI schreiben kann (PHSZ)? Oder erhöht sich die Performanz beim Schreiben dank KI-Unterstützung? Dies ist nicht nur eine Frage von Sprachunterricht, bekanntlich findet Lernen nicht ohne Sprache statt. Ebensowenig funktioniert eigenständiges Denken ohne Sprache (Honegger/De Vito/Bach 2020). Umgang mit KI betrifft Denkförderung und Sprachförderung.

Es folgt eine Auswahl von weiterführenden Fragen für den Unterricht und das Lernen in allen Fächern:

A) Lehrende

  1. Wie integriere ich als Lehrende KI-Tools sinnvoll in den Unterricht (→ Beispiel)?  
  1. Wie gestalte ich motivierende Schreibaufgaben und baue die Leistungsfähigkeit von KI in Lernprozesse ein? 
  1. Wie begleite ich einzelne Lernende mit oder dank KI effektiv? 
  1. Was bedeuten Lösungsansätze wie «mehr mündlich» oder «mehr prozessorientierte Lernbegleitung» (siehe bspw. PHSZ) konkret für meinen Unterricht? Gezieltes wirksames Feedback und wirkungsvolle Reflexion. Dies impliziert eine Änderung in methodischen Settings (vgl. Hassler/Honegger 2022

B) Schulleitungen und Schulteams 

  1. Wie nutzen wir KI-Tools im Unterricht als Werkzeug und gewährleisten dabei den Datenschutz? → eine Möglichkeit
  1. Welche Richtlinien und Freiräume brauchen wir für den Einsatz von KI im Unterricht und an Prüfungen (inklusive Projektarbeiten)?

C) Prüfungen

  1. Welche Rahmenbedingungen gelten für Prüfungen und Projektarbeiten?  
  1. Inwiefern sind Inhalte und Kompetenzen anzupassen? (Siehe bspw. Müller/Winkler 2020 für eine Einordnung des Grammatikunterricht)  

D) Weiter- und Ausbildung von Lehrenden 

  1. Inwiefern sind aktuellen Kompetenzbeschreibungen und -modelle anzupassen (Kröger 2021)? 
  1. Welche Kulturkompetenzen (Schreib- oder Lesekompetenzen u.a.) brauchen Menschen in Zukunft?  
  1. Welche Inhalte sollen vermittelt, welche Kompetenzen trainieren werden? 

Lehren und Lernen in einer von digitaler Technik geprägten Welt ist Balancieren zwischen faul und schlau:  Die Beziehung zwischen Mensch und Technik steuern.

INFOBOX

Angebote
Mehr über die Chancen und Herausforderungen von KI und anderen aufkommenden Bildungstechnologien wie VR oder Learning Analytics erfahren Sie im Modul Emerging Learning Technologies am 25.8. und 15.9.2023 am Campus PH Zürich.

Prägnante Aufgabenstellungen für Lernende effizient formulieren
Blitzkurs online, 25.5.2023, 17.30–19 Uhr

Podcast
Hören Sie mehr zum Thema ChatGPT und KI im Gespräch zwischen Rocco Custer (FHNW) und Dominic Hassler (PHZH) im Podcast #12 «Resonanzraum Bildung – ChatGPT, Chancen und Risiken in der Berufs- und Hochschulbildung».

Zu den Autor:innen

Monique Honegger ist Senior Teacher, ZFH-Professorin an der PH Zürich. Beratend, entwickelnd, weiterbildend und bildend. 

Kreatives Schreiben und Life Skills

Text: Peter Holzwarth

«Wenn du deine Rolle in der Welt besser verstehen willst, dann schreib. Versuche deine Seele ins Schreiben zu legen, auch wenn niemand es liest, oder, was schlimmer ist, jemand es liest, obwohl du es nicht wolltest. Der einfache Akt des Schreibens hilft uns, Gedanken zu ordnen und klar zu sehen, was uns umgibt. Ein Stück Papier und ein Kugelschreiber können Wunder bewirken – Schmerzen heilen, Träume in Erfüllung gehen lassen, verlorene Hoffnung wiederbringen.
Im Wort liegt Kraft.»

(Paolo Coelho 2007, S. 52)

«Ohne zu schreiben, kann man nicht denken; jedenfalls nicht in anspruchsvoller, anschlussfähiger Weise.»

(Niklas Luhmann 1992, S. 53)

«Schreiben heißt: sich selber lesen.»

(Max Frisch [1950] 1985, S. 19)

Der folgende Beitrag zeigt verschiedene Möglichkeiten auf, kreatives Schreiben mit der Entwicklung von Lebenskompetenzen zu verbinden.

Das Konzept Life Skills wurde von der World Health Organisation (WHO) eingeführt. Life Skills werden folgendermassen definiert:

«Life skills are abilities for adaptive behaviour that enable individuals to deal effectively with the demands and challenges of everyday life» (World Health Organisation 1997, S. 1).

Es werden zehn zentrale Skills definiert: Decision-making (Fertigkeit, Entscheidungen zu treffen), Problem-solving (Problemlösefertigkeit), Creative thinking (kreatives Denken), Critical thinking (kritisches Denken), Effective communication (Kommunikationsfertigkeit), Interpersonal relationship skills (Beziehungsfähigkeit), Self-awareness (Selbstwahrnehmung), Empathy (Empathie/Einfühlungsvermögen), Coping with emotions (Gefühlsbewältigung) und Coping with stress (Fähigkeit zur Stressbewältigung).

Über kreative Schreibprozesse können Life Skills angeeignet und weiterentwickelt werden. Im Folgenden ein paar Beispielszenarien:

  • Ein Teenager wird sich seiner ambivalenten Gefühle bewusst, indem er ihnen in Form eines kleinen Gedichts ästhetische Gestalt verleiht. (Self-awareness, Coping with emotions, Coping with stress)
  • Eine junge Lehrerin hat sich angewöhnt, jeden Tag drei Dinge aufzuschreiben, die gut gelaufen sind bzw. die ihr Freude bereitet haben (vgl. Beitrag «Ehemalige Tutorin Antonia Rakita im inside 2/2022» im SchreibBLOGzentrum). (Coping with stress, Coping with emotions)
  • Eine Schülerin schreibt einen kurzen Text aus der Perspektive einer Figur in einem Spielfilm. (Empathy)
  • Ein Heranwachsender verfasst einen Liebesbrief an sich selbst, in dem er all das würdigt und zum Ausdruck bringt, was er an sich mag. (Self-awareness)
  • Eine Schülerin lernt das Prinzip der Wiederholung von Textstellen kennen und empfindet Selbstwirksamkeit in Bezug auf das entstandene eigene Gedicht.
  • Eine Weiterbildungsteilnehmerin entdeckt eine spannende ästhetische Interaktion zwischen einem selbstgemachten Foto und einem selbstgeschriebenen Text.

Lernprozesse können auf mehreren Ebenen stattfinden:

  • Sich selbst besser kennen lernen (Selbstreflexion, Inneres Erleben durch Schreiben nach Aussen bringen und es dann mit Abstand betrachten können (Veräusserung und Resubjektivierung))
  • Phänomene der Welt besser deuten können (sich über Schreibprozesse einem Gegenstand annähern und schreibend verstehen)
  • Literarische Aspekte kennen lernen (z. B. das ästhetische Prinzip der Wiederholung, das Prinzip der kreativen Aneignung von Vorlagen im Sinne eines Remakes)
  • Stolz empfinden in Bezug auf das eigene Produkt (Selbstwirksamkeit, den Mut haben, den eigenen Text einem Publikum zu präsentieren, Anerkennung von anderen bekommen, sich selbst wertschätzen können)
  • Über Kritik und Feedback lernen und sich weiterentwickeln (z. B. Kritik und Feedback von anderen können helfen, den eigenen Text aus einer neuen Perspektive zu sehen (z. B. andere Lesarten), sich der eigenen Leserlenkungspotenziale bewusst zu werden und den eigenen Text noch besser zu machen)
  • Zusammenhänge von Denken, Fühlen und Schreiben ausloten (vgl. Eingangszitat von Niklas Luhmann oben)

Im Folgenden werden ausgewählte Projektideen aus dem Buch «Life Skills mit Medien» (Holzwarth 2022) vorgestellt:

Fotogedicht «Vergnügungen»

Ein Remake zum Gedicht «Vergnügungen» von Bertolt Brecht wird produziert und mit einem Foto kombiniert (Leis 2019, S. 130 u. 131; Holzwarth & Maurer 2014).

Brecht zählt in seinem sprachlich sehr einfachen Gedicht alltägliche Dinge auf, die Vergnügen bereiten können, wie z. B. der erste Blick aus dem Fenster am Morgen oder das Wiederfinden eines alten Buchs. Das Verfassen eines Remakes hilft den Schreibenden, sich ihrer «Alltagsschätze» bewusst zu werden: Man braucht nicht auf das große Glück zu warten, weil der Alltag bereits sehr viele kleine Reichtümer enthält. Man muss sie nur entdecken und bewusst machen.

«VERGNÜGUNGEN

Der erste Blick aus dem Fenster am Morgen
Das wiedergefundene Buch
Begeisterte Gesichter
Schnee, der Wechsel der Jahreszeiten
Die Zeitung
Der Hund
Die Dialektik
Duschen, Schwimmen
Alte Musik
Bequeme Schuhe
Begreifen
Neue Musik
Schreiben, Pflanzen
Reisen
Singen
Freundlich sein»

(Bertold Brecht, Suhrkamp Verlag 1990, S. 1022)
Abbildung 1: «Vergnügung» (Schulprojekt)

Fotogedicht «Rondell»

«Poesie macht einem die schwierigen Zeiten erträglicher.
Und Poesie macht die schönen Seiten noch schöner und strahlender.»

Heinz Rhyn, Pädagogische Hochschule Zürich, «PH Goes Poetry», 23.9.2021 (Übertragen aus dem Berndeutschen)

Die Gedichtform «Rondell» lebt von bestimmten Wiederholungen. Die Zeilen 1, 4 und 7 sind identisch und Zeile 2 ist gleich wie Zeile 8.

Ein Gedicht kann 8 Zeilen lang sein oder mehrere Strophen von 8 Zeilen hintereinander haben. Die folgende Darstellung visualisiert die Wiederholungsstruktur des «Rondells»:

Abbildung 2: Struktur «Rondell»

Was mein Leben reicher macht

«Beim Schwimmen im kühlen Badsee untertauchen und das eigene Herz schlagen hören.
Anita Chasiotis, Osnabrück»

(Lechner 2012, S. 63)

«Was mein Leben reicher macht» ist der Titel eines Buches, in dem Beiträge von Lesenden aus einer Kolumne der Zeit zusammengetragen wurden (Lechner 2012). In Anlehnung an diese Serie werden die Teilnehmenden gebeten aufzuschreiben, was ihr Leben reicher macht und den Text mit einem Bild zu kombinieren. Es muss sich dabei nicht um eine exakte Visualisierung des Geschriebenen handeln. Auch abstrakte Bilder können eine Rolle spielen. Weitere Projektideen zum kreativen Schreiben, sowie Ideen für Fotografie, Videoproduktion und Medienreflexion sind in Holzwarth 2022 zu finden.

INFOBOX

Schreibmodule
Unter dem Motto «Dem eigenen Schreiben auf der Spur» bieten Prof. Dr. Daniel Ammann, Erik Altorfer und Dr. Martina Meienberg zwei Module zum literarischen Schreiben an, die separat oder kombiniert gebucht werden können.

Das erste Modul «Biografisches Schreiben – das Leben erzählen» bietet Anfänger:innen wie Fortgeschrittenen Gelegenheit, sich im Schreiben mit Erlebnissen, Erinnerungen und persönlichen Lebenserfahrungen zu beschäftigen, um daraus eigene Prosatexte und Geschichten entstehen zu lassen.

Das zweite Modul «Literarisches Schreiben – Wege zum eigenen Schreibprojekt» widmet sich dem fiktionalen Schreiben und vermittelt Methoden des realistischen und fantastischen Erzählens.

In beiden Modulen erhalten Sie in Präsenzveranstaltungen und individuellen Coachings Anregungen und Impulse zum literarischen Schreiben und lernen Techniken der kreativen Textarbeit kennen.
Beide Module sind für den CAS Beraten im Bildungsbereich anrechenbar und sind mit je 1 ECTS dotiert.
Das erste Modul startet am 26. April 2023. Wir freuen uns auf Ihre Anmeldung!

Workshop
Workshop des Schreibzentrums zum Thema:
Kreatives Schreiben leicht gemacht: Das motivierende Prinzip «Remake»,
Peter Holzwarth, Mi. 3. Mai 2023, 17.30–19 Uhr

Zum Autor

Peter Holzwarth ist Dozent für Medienpädagogik an der PH Zürich. Er leitet das Fachteam Medienpädagogik, arbeitet im Schreibzentrum und im Digital Learning (DLE). Ausserdem ist er Berater bei der Stelle für Personalfragen (SteP). 

Der folgende Beitrag, ursprünglich veröffentlicht am 21. April 2020, wurde 2020 von allen im selben Jahr publizierten Beiträgen des Lifelong Learning Blogs am meisten aufgerufen. Gerne präsentieren wir Ihnen daher den «Best of 2020» hier noch einmal:

A good turn: das Konzept Flipped Classroom

Beitrag von Maik Philipp

Wäre es nicht schön, könnte man die Lernzeit in der (hoch)schulischen Bildung höchst (inter)aktiv nutzen? Das kann gelingen, wenn Lernende vorbereitet in die Veranstaltung kommen. Das setzt wiederum voraus, dass Lehrende ihnen zuvor (digital) eine Wissensgrundlage zur Verfügung stellen. Der «Flipped Classroom» scheint das zu ermöglichen. Zeit, dieses Konzept auf den empirischen Prüfstand zu stellen.

Flipped Classroom
Wer den Hörsaal betritt, hat sich bereits mit dem Stoff auseinandergesetzt
– so jedenfalls sieht es das Konzept des Flipped Classroom vor.

Was ist der «Flipped Classroom»?

Das Konzept des Flipped Classroom als Form des Blended Learnings erfährt momentan ein starkes Interesse in Praxis und Forschung. Wie der Name es schon andeutet, dreht das Konzept das Lernen gleichsam um, was sich in einer aktuellen und breit angelegten Definition niederschlägt: Beim Flipped Classroom

  • werden die meisten Lehraktivitäten zur Informationsübertragung aus der lokalen Lernumgebung entfernt,
  • wird die dadurch zeitlich entlastete Unterrichtszeit in der Präsenzphase für aktive und soziale Lernaktivitäten genutzt und
  • werden die Lernenden dazu verpflichtet, vor bzw. nach den örtlich durchgeführten Lektionen spezifische Aktivitäten zu absolvieren (z. B. voraufgezeichnete Vorlesungen oder andere Videos anzusehen), um so den vollen Nutzen aus dem Flipped-Classroom-Konzept zu ziehen.

Das wirkt überzeugend, weil die Lernenden eine aktivere Rolle einnehmen können und die wertvolle Zeit des Lehrens und Lernens von der Vermittlung von Fakten zunächst entlastet zu sein scheint. Ausserdem werden motivationale Grundbedürfnisse mutmasslich befriedigt und günstigere Rahmenbedingungen in puncto kognitiver Belastung geschaffen. Zudem besteht prinzipiell die Möglichkeit einer besser auf die Lernenden zugeschnittenen Darbietung der Inhalte durch Adaptionen und Differenzierung.

Das sagen aktuelle Metaanalysen aus

Ein so hoffnungsfroh stimmendes Konzept wirft natürlich die Frage auf, ob es seinen Mehrwert empirisch entfaltet. Dieser Frage gehen inzwischen diverse Studien weltweit nach. Diese wurden inzwischen auch metaanalytisch für das Lernen in Hochschulen ausgewertet, z. B. von Lo et al. (2017), Chen et al. (2018), Cheng et al. (2019), Låg & Sæle (2019), van Alten et al (2019) und Strelan et al. (2020). Die empirische Essenz dieser Metaanalysen – im Sinne statistisch signifikanter Effekte mitsamt Effektstärkenangaben (ES) – wird im Folgenden anhand verschiedener Leitfragen dargestellt.

a) Hat das Konzept Flipped Classroom einen leistungssteigernden Effekt bei kognitiven Massen?

Ja. Hier sind sich die Metaanalysen einig, wenn auch nicht unbedingt in der Höhe der Effekte, die sich teils um das Doppelte unterscheidet (ES = 0.19 (Cheng et al., 2019), ES = 0.30 (Lo et al., 2017), ES = 0.35 (Låg & Sæle, 2019), ES = 0.36 (van Alten et al., 2019), ES = 0.48 (bezogen nur auf Studierende; Strelan et al., 2020)). Die Befunde verweisen darauf, dass sich der Flipped Classroom in Testleistungen im Vergleich zu traditionellen Formen der hochschulischen Wissensvermittlung in Tests, Noten und Prüfungen auszahlt.

b) Profitieren Lernende aus bestimmten Leistungsdomänen stärker als andere?

Ja. Die Metaanalysen haben je nach zugrundeliegender Datenbasis und nach Kodierschema die Primärstudien etwas anders kodiert. Allgemein scheinen aber Lernende in Geistes- und Sozialwissenschaften besonders vom Flipped Classroom zu profitieren (Cheng et al., 2019; Låg & Sæle, 2019; van Alten et al., 2019; Strelan et al., 2020). Andere Fächergruppen zeigten allerdings auch Leitungszuwächse, diese waren im Vergleich freilich nicht ganz so stark.

Flipped Classroom
Flipped Classroom scheint sich in den Geistes- und Sozialwissenschaften besonders zu bewähren.

c) Verbessert der Flipped Classroom die Motivation?

Das ist derzeit eher unklar. Eine von zwei Metaanalysen (van Alten et al., 2019) hat auf breiterer empirischer Basis geprüft, ob Personen in Flipped Classrooms zufriedener mit dieser Lernumgebung waren als Kontrollgruppenmitglieder in traditionellen Lernumgebungen. Hier gab es einen nicht-signifikanten Nulleffekt (ES = 0.05). Eine andere (Låg & Sæle, 2019) fand nur einen geringen positiven Effekt (ES = 0.16), bei dem jedoch anzunehmen ist, dass es hier eine Überschätzung aufgrund eines Publikationsbias gibt.

d) Welche Merkmale des Flipped Classrooms sind empirisch lernförderlich?

Hier haben insbesondere grosse Metaanalysen geprüft, ob es einzelne Merkmale in den einzelnen Primärstudien gab, die sich auf breiterer Basis positiv oder negativ niederschlugen. Dies wurde für Leistungsdaten in mehreren Metaanalysen tatsächlich beobachtet, allerdings nicht für viele Merkmale:

  • Formative Lernerfolgskontrollen sind hilfreich: In gleich zwei Metaanalysen erwies es sich als günstig, wenn Quiz-Bestandteile vorhanden waren, also die Studierenden zu den Inhalten der ausgelagerten Lernaktivitäten Fragen beantworteten (ES = 0.19 (van Alten et al., 2019) bzw. 0.57 (Lo et al., 2017)).
  • Die Zeit mit Lernen in Face-to-Face-Situationen sollte nicht zulasten der Flipped-Classroom-Anteile gekürzt werden. Es hat sich als lernunwirksamer erwiesen, wenn die Lernzeit mit ausgelagertem Flipped Classroom länger war als jene mit Anwesenheit in der Hochschule (ES = -0.26; van Alten et al., 2019). Dies spricht für einen ausgeglichenen Einsatz von beiden Bestandteilen des Blended Learnings.
  • Es ist lernwirksamer, das Konzept Flipped Classroom als einen hochschuldidaktischen Bestandteil unter mehreren einzusetzen. Dies ergibt sich daraus, dass sich in einer der Metaanalysen, einer der grössten bislang durchgeführten (Strelan et al., 2020), dann höhere Effekte einstellten, wenn nur ein Teil der Inhalte bzw. des Kurses über Flipped Classroom realisiert wurde (ES = 0.77 ggü. ES = 0.42 bei vollständiger Behandlung von Inhalten im Flipped-Classroom-Format).

Fazit: Auf dem Weg zum bedacht eingesetzten Flipped Classroom

Das Konzept Flipped Classroom scheint im Lichte vieler Studien ein hochschuldidaktisch sinnvolles Werkzeug zu sein, um kognitive Leistungen zu steigern. Allerdings scheint es hierbei günstiger zu sein, nicht alleinig darauf zu vertrauen, sondern ausgewählte Inhalte – und diese nicht zulasten von Face-to-Face-Lernsituationen innerhalb der Präsenzphase – zu vermitteln. Auch die niederschwellige formative Erfassung des Lernerfolgs zu den ausgelagerten Lernsituationen als Bestandteil der Face-to-Face-Settings scheint ein Merkmal des günstigen Nutzens dieser Form des Blended Learnings zu sein.

Natürlich ist diese Form des Lehrens kein Selbstgänger, sondern didaktisch und logistisch anspruchsvoll. Es ist daher besonders verdienstvoll, dass in einer sehr lesenswerten Metaanalyse von Lo et al. (2017, S. 62–66) zehn Prinzipien zum Einsatz des Flipped Classrooms nicht nur aus den empirischen Erträgen, sondern auch aus den Umsetzungsschwierigkeiten extrahiert wurden. Diese Prinzipien beziehen sich auf den grundsätzlichen Übergang (Prinzipien 1 und 2), die Gestaltung der Nicht-Präsenzphase (Prinzipien 3 bis 5) und schliesslich die Präsenzphase selbst (Prinzipien 6 bis 10).

  1. Schaffen Sie einen günstigen Übergang zum Flipped Classroom für die Lernenden. Diese sind nicht mit dem Konzept vertraut und benötigen eine Einführung.
  2. Schaffen Sie einen günstigen Übergang zum Flipped Classroom für die Lehrenden. Die Einarbeitung und Umstellung von Lehrenden auf dieses Konzept brauchen Zeit und Ressourcen.
  3. Erwägen Sie die Einführung von Einführungsmaterialien und die Bereitstellung von Online-Unterstützung in Videovorträgen. Nicht alles verstehen Lernende sofort, weshalb eine flankierende Hilfestellung durch Chats Verständnisschwierigkeiten unmittelbar beseitigen kann. Ausserdem kann es sich lohnen, komplexere Inhalte nicht in Videos, sondern in der Face-to-Face-Situation zu behandeln.
  4. Ermöglichen Sie effektives Multimedia-Lernen mithilfe von der Lehrperson erstellter Kurzvideos. Die Videos sollten nicht zu lang sein und den lernförderlichen Gestaltungsprinzipien des multimedialen Lernens folgen.
  5. Verwenden Sie Online-Übungen mit computerbasiertem Feedback, um die Vorbereitung der Lernenden zu motivieren. Um die Aneignung des Lernstoffs vorgängig zu unterstützen, empfiehlt sich der Einsatz von Feedbackmechanismen bereits in der Phase der ausgelagerten Vermittlung von Inhalten. Auch die Verwendung solcher Lernerfolgskontrollen für die finalen Noten kann erfolgen.
  6. Adaptieren Sie die Lektionsinhalte in der Präsenzphase in Bezug auf die Lernleistungen der Lernenden ausserhalb der Präsenzphase. Die Fehlanwendungen und Fragen der Lernenden, die ausserhalb der Präsenzphase erkennbar waren (z. B. im Chat oder bei Feedbackmechanismen), bieten die Möglichkeit der Konfektionierung.
  7. Aktivieren Sie die Lehrenden mithilfe einer strukturierten formativen Bewertung, z. B. eines Quiz‘ zu Beginn der Präsenzphase. Dies ermöglicht die Vorwissensnutzung, was generell als lernförderlich gilt.
  8. Fordern Sie die Lernenden auf, verschiedene Aufgaben und reale Probleme zu lösen. In solchen Anwendungen des Wissens können Motivation und Interaktion gefördert werden, zudem können sich auch kognitive Konflikte und metakognitive Prüfungen des eigenen Verständnisses ergeben.
  9. Erfüllen Sie die Bedürfnisse der Lernenden durch Feedback und differenziertere Inhalte und Vermittlungsformen. Die eingesparte Zeit durch die Auslagerung ermöglicht eine intensivere Interaktion und passgenauere Erläuterung.
  10. Fördern Sie kooperatives Lernen durch Lernaktivitäten in kleinen Gruppen. Nicht nur auf die lehrende Person kommt es an, auch die Gruppe der Lernenden kann in geeigneten Formen kooperativ lernen.
INFOBOX

Lesetipp: Die Handreichung «Lehre gestalten an der PH Zürich» liefert Anregungen und Ideen, wie Mischformen von Online- und Präsenzlehre sowie von synchronen und asynchronen Lehr-Lern-Formaten gestaltet werden können. In dieses Kontinuum wird auch der Ansatz des Flipped Classroom eingeordnet.

Zum Autor

Maik Philipp ist Professor für Deutschdidaktik an der PH Zürich. Seine Schwerpunkte sind Lese- und Schreibförderung mit Fokus auf Evidenzbasierung. Neuere Publikationen: «Multiple Dokumente verstehen» (2019), «Lesekompetenz bei multiplen Texten» (2018), «Lesestrategien» (2015) und «Grundlagen der effektiven Schreibdidaktik» (2018).

Vom Emergency Remote Teaching zur Hochschulbildung für die Zukunft: Wirkungen der Pandemie auf die Digitalisierung von Studium und Lehre

Beitrag von Barbara Getto

Die Rolle digitaler Medien hat im Kontext von Studium und Lehre an Hochschulen in den letzten zehn bis fünfzehn Jahren deutlich an Bedeutung gewonnen. Gleichwohl konnte bislang nicht von einer flächendeckenden Durchdringung digitaler Medien in der Hochschullehre gesprochen werden. Im Frühjahr des Jahres 2020 katapultierte uns die Covid-19-Pandemie in eine bislang unbekannte Situation, die uns seitdem in nahezu allen gesellschaftlichen, beruflichen und privaten Bereichen vor enorme Herausforderungen stellt.

An den Hochschulen musste die Lehre aufgrund von Kontaktbeschränkungen schlagartig auf Fernlehre umgestellt werden. Bringen die pandemischen Bedingungen nun also auch die Digitalisierung voran? Brauchen Hochschulen künftig keine Strategien für die Digitalisierung mehr, weil jetzt ohnehin alles auf Online Lehre umgestellt ist? Oder sind die Zeiten für Veränderungsprozesse wohlmöglich gar nicht so vorteilhaft? Um hier zu einer Einschätzung zu gelangen, lohnt sich ein Blick zurück auf die Erfahrungen mit der Förderung des E-Learning an Hochschulen:

Von E-Learning-Projekten zur Digitalisierung von Studium und Lehre 

Über viele Jahre wurde die Entwicklung und Implementierung digitaler Lehre an Hochschulen über einzelne Projektmassnahmen vorangetrieben. E-Learning wurde hauptsächlich von einzelnen engagierten Lehrenden vorangetrieben, die Potenziale digitaler Medien experimentell in ihren Lehrveranstaltungen einsetzten. Diese bottom-up-Ansätze wurden in der weiteren Entwicklung als Ausgangspunkt für die Dissemination digitaler Lehrangebote an Hochschulen gesehen. Man hoffte, dass diese Projekte eine gewisse Strahlkraft entwickeln würden, die zu einer weiteren Verbreitung führen würde. Eine breite Entfaltung blieb jedoch häufig aus. Allerdings haben die verschiedenen Programme zur Förderung von E-Learning an Hochschulen sichtbar gemacht, wie digitale Lehre sinnvoll aussehen kann. Sie haben aber eben auch aufgezeigt, dass sich diese Konzepte und Initiativen keineswegs von selbst in einer Organisation verankern.

Der Fokus richtete sich daher immer mehr auf die organisationalen Elemente einer Verstetigung und Verbreiterung digitaler Lehre. Zunehmend setzte sich die Erkenntnis durch, dass Projekte als Einzelmassnahmen nicht hinreichend zur Hochschulentwicklung beitragen, wenn sie nicht in eine übergreifende Strategie eingebunden sind, die fest verankert ist, mit den Zielen der Einrichtung. Seit einigen Jahren wird Hochschulen daher empfohlen, die Digitalisierung im Kontext von Studium und Lehre strategisch zu betreiben.

Bildquelle: PHZH

Die Rolle von Strategien der Digitalisierung von Studium und Lehre

Um Lehre im digitalen Zeitalter nachhaltig zu entwickeln, soll bei der Entwicklung von Strategien der Digitalisierung nicht die Digitalisierung als Selbstzweck im Vordergrund stehen. Vielmehr wird Hochschulen angeraten ihre strategische Zielsetzung im Kontext der Digitalisierung entlang der Hochschulentwicklung zu betreiben und damit ihr Profil zu schärfen (Getto & Kerres, 2017).

Um erfolgreich zu sein, müssen für die Umsetzung der Digitalisierungsstrategie Massnahmen entwickelt werden, die die Teilhabe und Mitwirkung entscheidender Schlüsselpersonen und Akteursgruppen fördern. Wenn allein die Leitungsebene ein Konzept entwickelt, besteht die Gefahr, dass die Akzeptanz bei wesentlichen Stakeholdern (z.B. Hochschullehrenden) nicht gegeben ist. Bottom-up lässt sich aber, aufgrund der Divergenz von Interessen und Prioritäten der Akteure, schlecht eine gemeinsame strategische Ausrichtung definieren. Mit der Strategie formuliert die Hochschule also Ziele sowie entsprechende Leitlinien und Handlungsroutinen für das Erreichen der Ziele und definiert Kriterien für das Bewältigen von Entscheidungssituationen.

Brauchen wir noch Digitalisierungsstrategien in Zeiten der Pandemie?

Zu beobachten war, dass im April 2020 schlagartig ortsunabhängiges Lehren und Lernen mit digitaler Technik gefordert – und weitgehend umgesetzt wurde. Aufgrund der Dringlichkeit der äusseren Umstände, gab es kaum Zeit für strategisch-konzeptionelle Überlegungen. Schon in der ersten Woche des „Lockdowns“ vermeldeten Hochschulen, dass sie ihren Betrieb vollständig auf digitale Lehre umstellen und die Lehre an ihrer Hochschule gesichert sei. Für Insider kam dieser Schritt überraschend. Worauf E-Learning Spezialist:innen in jahrelangen Bemühungen mehr oder weniger erfolgreich hingearbeitet haben, war nun plötzlich möglich. Viele Dozierende haben sich mit Engagement in neue Tools eingearbeitet und ihre Hochschullehre den neuen Umständen angepasst. Infrastrukturen wurden weiter ausgebaut (Getto & Zellweger 2021).

Aus Perspektive der Organisationsentwicklung sind die Zeiten des Lockdowns allerdings denkbar ungeeignet für komplexe Veränderungsprozesse und die Gestaltung des organisationalen Wandels. Denn dieser benötigt eine Kommunikation der Akteure, die durch Vertrauen und Zuversicht gekennzeichnet sein sollte. In Zeiten der häuslichen Isolation und Abgeschiedenheit, mit der Videokonferenz als dünnem Faden, der Kommunikation herstellen kann, ist aber gerade die Vertrauensbildung zwischen den Beteiligten eher erschwert (Kerres, 2020). In dieser besonderen Situation steht eher im Fokus, die wichtigsten Abläufe und Angebote „am Laufen zu halten“. Organisationsentwicklung in Hochschulen hingegen ist nur bedingt gut gestaltbar.

Während der Pandemie waren Lehrende zunächst einmal auf sich selbst gestellt. Zumeist fehlte die Chance, ein überlegtes mediendidaktisches Konzept zu entwickeln, dies mit Kolleg:innen in einem angemessenen Rahmen zu besprechen und mit deren Initiativen abzugleichen und sich ggfs. externe Beratung in der Planung und Entwicklung einzuholen. Nüchtern gesagt, während der Distanz-Semester wurden Akteur:innen durch externe Gegebenheiten zu einem bestimmten Verhalten „gezwungen“, es gab wenig Alternativen, als auf den Modus digitalen „Emergency Remote Teaching“ auszuweichen. 

Ebenso hatten die Hochschulen kaum eine Chance, Richtungen zu definieren, und in eine kollegial abgestimmten Digitalstrategie zu giessen, die mit abgestimmten Massnahmen einhergehen. Dies spricht eher weniger dafür, dass die Corona-Erfahrung von sich aus eine grundlegende Veränderung der individuellen Einstellungen mit sich bringt. Sehr wohl aber kann vermutet werden, dass mehr Akteur:innen im System Hochschule deutlich geworden ist, dass an der Digitalisierung wesentlich engagierter gearbeitet werden sollte, nicht nur für Zeiten der Pandemie, sondern als ein Charakteristikum der weiteren gesellschaftlichen, wirtschaftlichen und politischen Entwicklung für die Hochschulbildung in einer Kultur der Digitalität.

INFOBOX

Am 25. Nov. 2021 findet ein Anlass statt, zum Thema "Digitale Hochschule Post-Corona – Was ist zu tun?" mit Daniel Baumann und Renato Soldenhoff. Im Zentrum des Anlass steht die Frage welche Schritte erforderlich sind, um die Erfahrungen, Erkenntnisse und neuen Kompetenzen aus den vergangenen Monaten zu nutzen und die Digitalisierung von Studium und Lehre weiter zu entwickeln.

Zur Autorin

Barbara Getto ist Professorin für Medienbildung in der Abteilung Hochschulentwicklung und Erwachsenenbildung und Mitglied im Zentrum Bildung und Digitaler Wandel. Weitere Informationen finden Sie hier

Vom Hellraumprojektor zum Streaming im Unterricht

Beitrag von Arlette Haase

Digitalisierung, Digitalität, digitale Transformation – Schlagwörter, die uns seit Jahren begleiten, manche mehr, manche weniger, aber sie betreffen praktisch jeden. Die zunehmende Digitalisierung ist auch im Bildungsbereich, besonders seit Beginn der Pandemie, sehr stark spürbar. Während ich zu Beginn meiner Laufbahn als Lehrperson (und ich zähle mich zur jüngeren Generation) nur einen Hellraumprojektor und einen Fernseher mit Videorekorder zur Verfügung hatte, sassen am Ende meiner Tätigkeit als Berufsschullehrerin und zu Beginn meiner Funktion als Dozentin an der PHZH die Lernenden mit dem eigenen Notebook im Unterricht, WLAN überall im Schulhaus war selbstverständlich und Filme wurden gestreamt. Die Lehrbücher waren nur noch digital verfügbar, die Arbeitsblätter auf Moodle abgelegt, die Dateien der Lernenden wurden auf Onedrive gespeichert. Während die meisten Lehrpersonen noch für einen Unterricht ohne digitale Medien ausgebildet wurden, findet sich heute praktisch kein Klassenzimmer mehr ohne Smartphones und Notebooks. Jugendliche verfügen meistens über mehrere digitale Geräte, so dass sich durch die Veränderung hin zu einem «one to many» zusätzliche Chancen und Herausforderungen für Lehrpersonen und den Unterricht ergeben.

Eine weit verbreitete Annahme besteht darin, dass Unterricht mit digitalen Medien vor allem darin besteht, dass statt auf Papier nun im Word geschrieben wird und bewährte Unterrichtsmethoden durch digitale Tools ersetzt werden. Arbeitsblätter werden den Lernenden digital zur Verfügung gestellt, die diese dann in ihrem virtuellen Ordner speichern. Doch solche Szenarien greifen zu kurz und schöpfen die Möglichkeiten bei weitem nicht aus. Es geht nicht darum, eine vielfach bewährte Methode im Unterricht einfach durch ein digitales Tool zu ersetzen, statt der Wandtafel nehmen wir jetzt halt die digitale Pinnwand oder ein Arbeitsblatt stellen wir nun als pdf anstatt als ausgedruckte Kopie zur Verfügung. Vielmehr geht es darum herauszufinden, welche neuen Möglichkeiten sich durch die digitalen Medien für unseren Unterricht ergeben. Wie lassen sich Lernziele mit digitalen Medien effizienter, aber vor allem auch effektiver erreichen? Wie können wir beispielsweise die unendliche Informationsflut und -vielfalt des Internets kritisch und gewinnbringend nutzen? Welche Rolle spielen Social Media beim Lernen und wie können soziale Netzwerke genutzt werden, um ein persönliches Lernnetzwerk zu bilden? Wie gestalten wir die Zusammenarbeit im digitalen Raum? Wie können Gamification-Elemente spielerisch in unseren Unterricht einfliessen? Wie verändern sich unsere Unterrichtsziele und unsere Rolle als Lehrperson, wenn Lernende ihre Informationen auch aus dem Internet holen können? Und welche Kompetenzen benötigen unsere Lernenden und wir als Lehrpersonen, damit uns dies gelingt?

Der neue CAS Lehren und Lernen digital der PH Zürich für Lehrpersonen der Sekundarstufe II möchte hier eine Brücke schlagen und aufzeigen, welche neuen Möglichkeiten digitale Medien im Unterricht bieten können. Die Bandbreite der Themen reicht dabei von E-Didaktik für den Präsenzunterricht wie auch für Blended-Learning-Szenarien über digitales Prüfen bis hin zu Wikipedia und Social Media sowie Games / Gamification im Unterricht. Aber auch Themen wie digitale Kompetenzen und Kultur der Digitalität finden im neuen CAS Platz. Die Teilnehmenden, sowohl Berufsschul – als auch Gymnasiallehrpersonen, stellen sich aus einem breiten Modulangebot ein Weiterbildungsprogramm zusammen, das auf ihre Bedürfnisse zugeschnitten ist. Das bereits bestehende Modul «Pädagogischer ICT-Support light für Berufsfachschulen» (PICTS light BFS) wird in den neuen CAS integriert und richtet sich insbesondere an Lehrpersonen, die eine Themenführerschaft an ihrer Schule übernehmen möchten. Weitere Informationen zum neuen CAS Lehren und Lernen digital sowie das Anmeldeformular werden im Frühling 2021 auf der Homepage des Zentrums für Berufs- und Erwachsenenbildung der PH Zürich aufgeschaltet.

INFOBOX

Der Lehrgang «CAS Lehren und Lernen digital» startet im August 2021. Jedes Modul kann auch einzeln gebucht werden. Am 22. April 2021 findet ein Informationsanlass dazu statt.

Zur Autorin

Arlette Haase ist Wissenschaftliche Mitarbeiterin im Themenbereich «Digitales Lernen» des Zentrums Berufs- und Erwachsenenbildung der PH Zürich.

Folgen über E-Mail
LINKEDIN
Share